| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmatb | Structured version Visualization version GIF version | ||
| Description: An element covered by the lattice unity, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.) |
| Ref | Expression |
|---|---|
| lhpmat.l | ⊢ ≤ = (le‘𝐾) |
| lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
| lhpmat.z | ⊢ 0 = (0.‘𝐾) |
| lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpmatb | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 4 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | lhpmat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | lhpmat 40149 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
| 7 | 6 | anassrs 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ ¬ 𝑃 ≤ 𝑊) → (𝑃 ∧ 𝑊) = 0 ) |
| 8 | hlatl 39479 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 9 | 8 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝐾 ∈ AtLat) |
| 10 | simplr 768 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝑃 ∈ 𝐴) | |
| 11 | 3, 4 | atn0 39427 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
| 12 | 11 | necomd 2984 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ≠ 𝑃) |
| 13 | 9, 10, 12 | syl2anc 584 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 0 ≠ 𝑃) |
| 14 | neeq1 2991 | . . . . 5 ⊢ ((𝑃 ∧ 𝑊) = 0 → ((𝑃 ∧ 𝑊) ≠ 𝑃 ↔ 0 ≠ 𝑃)) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → ((𝑃 ∧ 𝑊) ≠ 𝑃 ↔ 0 ≠ 𝑃)) |
| 16 | 13, 15 | mpbird 257 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → (𝑃 ∧ 𝑊) ≠ 𝑃) |
| 17 | hllat 39482 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 18 | 17 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝐾 ∈ Lat) |
| 19 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 20 | 19, 4 | atbase 39408 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 21 | 10, 20 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝑃 ∈ (Base‘𝐾)) |
| 22 | 19, 5 | lhpbase 40117 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 23 | 22 | ad3antlr 731 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝑊 ∈ (Base‘𝐾)) |
| 24 | 19, 1, 2 | latleeqm1 18375 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 𝑃)) |
| 25 | 18, 21, 23, 24 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → (𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 𝑃)) |
| 26 | 25 | necon3bbid 2966 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) ≠ 𝑃)) |
| 27 | 16, 26 | mpbird 257 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → ¬ 𝑃 ≤ 𝑊) |
| 28 | 7, 27 | impbida 800 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 meetcmee 18220 0.cp0 18329 Latclat 18339 Atomscatm 39382 AtLatcal 39383 HLchlt 39469 LHypclh 40103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-lat 18340 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-lhyp 40107 |
| This theorem is referenced by: cdlemh 40936 |
| Copyright terms: Public domain | W3C validator |