Step | Hyp | Ref
| Expression |
1 | | lhpmat.l |
. . . 4
β’ β€ =
(leβπΎ) |
2 | | lhpmat.m |
. . . 4
β’ β§ =
(meetβπΎ) |
3 | | lhpmat.z |
. . . 4
β’ 0 =
(0.βπΎ) |
4 | | lhpmat.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
5 | | lhpmat.h |
. . . 4
β’ π» = (LHypβπΎ) |
6 | 1, 2, 3, 4, 5 | lhpmat 39205 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β§ π) = 0 ) |
7 | 6 | anassrs 467 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ Β¬ π β€ π) β (π β§ π) = 0 ) |
8 | | hlatl 38534 |
. . . . . 6
β’ (πΎ β HL β πΎ β AtLat) |
9 | 8 | ad3antrrr 727 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β πΎ β AtLat) |
10 | | simplr 766 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β π β π΄) |
11 | 3, 4 | atn0 38482 |
. . . . . 6
β’ ((πΎ β AtLat β§ π β π΄) β π β 0 ) |
12 | 11 | necomd 2995 |
. . . . 5
β’ ((πΎ β AtLat β§ π β π΄) β 0 β π) |
13 | 9, 10, 12 | syl2anc 583 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β 0 β π) |
14 | | neeq1 3002 |
. . . . 5
β’ ((π β§ π) = 0 β ((π β§ π) β π β 0 β π)) |
15 | 14 | adantl 481 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β ((π β§ π) β π β 0 β π)) |
16 | 13, 15 | mpbird 257 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β (π β§ π) β π) |
17 | | hllat 38537 |
. . . . . 6
β’ (πΎ β HL β πΎ β Lat) |
18 | 17 | ad3antrrr 727 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β πΎ β Lat) |
19 | | eqid 2731 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
20 | 19, 4 | atbase 38463 |
. . . . . 6
β’ (π β π΄ β π β (BaseβπΎ)) |
21 | 10, 20 | syl 17 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β π β (BaseβπΎ)) |
22 | 19, 5 | lhpbase 39173 |
. . . . . 6
β’ (π β π» β π β (BaseβπΎ)) |
23 | 22 | ad3antlr 728 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β π β (BaseβπΎ)) |
24 | 19, 1, 2 | latleeqm1 18425 |
. . . . 5
β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β€ π β (π β§ π) = π)) |
25 | 18, 21, 23, 24 | syl3anc 1370 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β (π β€ π β (π β§ π) = π)) |
26 | 25 | necon3bbid 2977 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β (Β¬ π β€ π β (π β§ π) β π)) |
27 | 16, 26 | mpbird 257 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ π β π΄) β§ (π β§ π) = 0 ) β Β¬ π β€ π) |
28 | 7, 27 | impbida 798 |
1
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (Β¬ π β€ π β (π β§ π) = 0 )) |