Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmatb | Structured version Visualization version GIF version |
Description: An element covered by the lattice unit, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.) |
Ref | Expression |
---|---|
lhpmat.l | ⊢ ≤ = (le‘𝐾) |
lhpmat.m | ⊢ ∧ = (meet‘𝐾) |
lhpmat.z | ⊢ 0 = (0.‘𝐾) |
lhpmat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpmat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmatb | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpmat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | lhpmat.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | lhpmat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | lhpmat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | lhpmat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 1, 2, 3, 4, 5 | lhpmat 37971 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = 0 ) |
7 | 6 | anassrs 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ ¬ 𝑃 ≤ 𝑊) → (𝑃 ∧ 𝑊) = 0 ) |
8 | hlatl 37301 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
9 | 8 | ad3antrrr 726 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝐾 ∈ AtLat) |
10 | simplr 765 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝑃 ∈ 𝐴) | |
11 | 3, 4 | atn0 37249 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
12 | 11 | necomd 2998 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ≠ 𝑃) |
13 | 9, 10, 12 | syl2anc 583 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 0 ≠ 𝑃) |
14 | neeq1 3005 | . . . . 5 ⊢ ((𝑃 ∧ 𝑊) = 0 → ((𝑃 ∧ 𝑊) ≠ 𝑃 ↔ 0 ≠ 𝑃)) | |
15 | 14 | adantl 481 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → ((𝑃 ∧ 𝑊) ≠ 𝑃 ↔ 0 ≠ 𝑃)) |
16 | 13, 15 | mpbird 256 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → (𝑃 ∧ 𝑊) ≠ 𝑃) |
17 | hllat 37304 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
18 | 17 | ad3antrrr 726 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝐾 ∈ Lat) |
19 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
20 | 19, 4 | atbase 37230 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
21 | 10, 20 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝑃 ∈ (Base‘𝐾)) |
22 | 19, 5 | lhpbase 37939 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
23 | 22 | ad3antlr 727 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → 𝑊 ∈ (Base‘𝐾)) |
24 | 19, 1, 2 | latleeqm1 18100 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 𝑃)) |
25 | 18, 21, 23, 24 | syl3anc 1369 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → (𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 𝑃)) |
26 | 25 | necon3bbid 2980 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) ≠ 𝑃)) |
27 | 16, 26 | mpbird 256 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) ∧ (𝑃 ∧ 𝑊) = 0 ) → ¬ 𝑃 ≤ 𝑊) |
28 | 7, 27 | impbida 797 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑊 ↔ (𝑃 ∧ 𝑊) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 meetcmee 17945 0.cp0 18056 Latclat 18064 Atomscatm 37204 AtLatcal 37205 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 |
This theorem is referenced by: cdlemh 38758 |
Copyright terms: Public domain | W3C validator |