Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincellss Structured version   Visualization version   GIF version

Theorem lincellss 48421
Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Assertion
Ref Expression
lincellss ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆))

Proof of Theorem lincellss
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑀 ∈ LMod)
2 simprl 770 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
3 ssexg 5262 . . . . . . . 8 ((𝑉𝑆𝑆 ∈ (LSubSp‘𝑀)) → 𝑉 ∈ V)
43ancoms 458 . . . . . . 7 ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ V)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑀) = (LSubSp‘𝑀)
75, 6lssss 20839 . . . . . . . . 9 (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
8 sstr 3944 . . . . . . . . . . 11 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
9 elpwg 4554 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
108, 9syl5ibrcom 247 . . . . . . . . . 10 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))
1110expcom 413 . . . . . . . . 9 (𝑆 ⊆ (Base‘𝑀) → (𝑉𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))))
127, 11syl 17 . . . . . . . 8 (𝑆 ∈ (LSubSp‘𝑀) → (𝑉𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))))
1312imp 406 . . . . . . 7 ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))
144, 13mpd 15 . . . . . 6 ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
15143adant1 1130 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1615adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
17 lincval 48404 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
181, 2, 16, 17syl3anc 1373 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
19 eqid 2729 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
20 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
216, 19, 20gsumlsscl 48374 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑆))
2221imp 406 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑆)
2318, 22eqeltrd 2828 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)
2423ex 412 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  m cmap 8753   finSupp cfsupp 9251  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  LModclmod 20763  LSubSpclss 20834   linC clinc 48399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lss 20835  df-linc 48401
This theorem is referenced by:  ellcoellss  48430
  Copyright terms: Public domain W3C validator