![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincellss | Structured version Visualization version GIF version |
Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
Ref | Expression |
---|---|
lincellss | ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑀 ∈ LMod) | |
2 | simprl 769 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | |
3 | ssexg 5280 | . . . . . . . 8 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ∈ (LSubSp‘𝑀)) → 𝑉 ∈ V) | |
4 | 3 | ancoms 459 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ V) |
5 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
6 | eqid 2736 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
7 | 5, 6 | lssss 20397 | . . . . . . . . 9 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
8 | sstr 3952 | . . . . . . . . . . 11 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀)) | |
9 | elpwg 4563 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀))) | |
10 | 8, 9 | syl5ibrcom 246 | . . . . . . . . . 10 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
11 | 10 | expcom 414 | . . . . . . . . 9 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
13 | 12 | imp 407 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
14 | 4, 13 | mpd 15 | . . . . . 6 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
15 | 14 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
16 | 15 | adantr 481 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
17 | lincval 46480 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
18 | 1, 2, 16, 17 | syl3anc 1371 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
19 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
20 | eqid 2736 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
21 | 6, 19, 20 | gsumlsscl 46449 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆)) |
22 | 21 | imp 407 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆) |
23 | 18, 22 | eqeltrd 2838 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆) |
24 | 23 | ex 413 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ⊆ wss 3910 𝒫 cpw 4560 class class class wbr 5105 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 finSupp cfsupp 9305 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 0gc0g 17321 Σg cgsu 17322 LModclmod 20322 LSubSpclss 20392 linC clinc 46475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-gsum 17324 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-lmod 20324 df-lss 20393 df-linc 46477 |
This theorem is referenced by: ellcoellss 46506 |
Copyright terms: Public domain | W3C validator |