| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincellss | Structured version Visualization version GIF version | ||
| Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincellss | ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑀 ∈ LMod) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | |
| 3 | ssexg 5293 | . . . . . . . 8 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ∈ (LSubSp‘𝑀)) → 𝑉 ∈ V) | |
| 4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ V) |
| 5 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 6 | eqid 2735 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 7 | 5, 6 | lssss 20893 | . . . . . . . . 9 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
| 8 | sstr 3967 | . . . . . . . . . . 11 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀)) | |
| 9 | elpwg 4578 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀))) | |
| 10 | 8, 9 | syl5ibrcom 247 | . . . . . . . . . 10 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 11 | 10 | expcom 413 | . . . . . . . . 9 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
| 12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
| 13 | 12 | imp 406 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 14 | 4, 13 | mpd 15 | . . . . . 6 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 15 | 14 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 17 | lincval 48385 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
| 18 | 1, 2, 16, 17 | syl3anc 1373 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
| 19 | eqid 2735 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 20 | eqid 2735 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 21 | 6, 19, 20 | gsumlsscl 48355 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆)) |
| 22 | 21 | imp 406 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆) |
| 23 | 18, 22 | eqeltrd 2834 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆) |
| 24 | 23 | ex 412 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 finSupp cfsupp 9373 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 Σg cgsu 17454 LModclmod 20817 LSubSpclss 20888 linC clinc 48380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-linc 48382 |
| This theorem is referenced by: ellcoellss 48411 |
| Copyright terms: Public domain | W3C validator |