Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincellss Structured version   Visualization version   GIF version

Theorem lincellss 48271
Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Assertion
Ref Expression
lincellss ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆))

Proof of Theorem lincellss
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑀 ∈ LMod)
2 simprl 771 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
3 ssexg 5328 . . . . . . . 8 ((𝑉𝑆𝑆 ∈ (LSubSp‘𝑀)) → 𝑉 ∈ V)
43ancoms 458 . . . . . . 7 ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ V)
5 eqid 2734 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2734 . . . . . . . . . 10 (LSubSp‘𝑀) = (LSubSp‘𝑀)
75, 6lssss 20951 . . . . . . . . 9 (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
8 sstr 4003 . . . . . . . . . . 11 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
9 elpwg 4607 . . . . . . . . . . 11 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
108, 9syl5ibrcom 247 . . . . . . . . . 10 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))
1110expcom 413 . . . . . . . . 9 (𝑆 ⊆ (Base‘𝑀) → (𝑉𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))))
127, 11syl 17 . . . . . . . 8 (𝑆 ∈ (LSubSp‘𝑀) → (𝑉𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))))
1312imp 406 . . . . . . 7 ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))
144, 13mpd 15 . . . . . 6 ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
15143adant1 1129 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1615adantr 480 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
17 lincval 48254 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
181, 2, 16, 17syl3anc 1370 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
19 eqid 2734 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
20 eqid 2734 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
216, 19, 20gsumlsscl 48224 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑆))
2221imp 406 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝑆)
2318, 22eqeltrd 2838 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)
2423ex 412 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962  𝒫 cpw 4604   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  m cmap 8864   finSupp cfsupp 9398  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485   Σg cgsu 17486  LModclmod 20874  LSubSpclss 20946   linC clinc 48249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-ur 20199  df-ring 20252  df-lmod 20876  df-lss 20947  df-linc 48251
This theorem is referenced by:  ellcoellss  48280
  Copyright terms: Public domain W3C validator