| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincellss | Structured version Visualization version GIF version | ||
| Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincellss | ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑀 ∈ LMod) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | |
| 3 | ssexg 5273 | . . . . . . . 8 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ∈ (LSubSp‘𝑀)) → 𝑉 ∈ V) | |
| 4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ V) |
| 5 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 7 | 5, 6 | lssss 20874 | . . . . . . . . 9 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
| 8 | sstr 3952 | . . . . . . . . . . 11 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀)) | |
| 9 | elpwg 4562 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀))) | |
| 10 | 8, 9 | syl5ibrcom 247 | . . . . . . . . . 10 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 11 | 10 | expcom 413 | . . . . . . . . 9 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
| 12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
| 13 | 12 | imp 406 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
| 14 | 4, 13 | mpd 15 | . . . . . 6 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 15 | 14 | 3adant1 1130 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
| 17 | lincval 48391 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
| 18 | 1, 2, 16, 17 | syl3anc 1373 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
| 19 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 20 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 21 | 6, 19, 20 | gsumlsscl 48361 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆)) |
| 22 | 21 | imp 406 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆) |
| 23 | 18, 22 | eqeltrd 2828 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆) |
| 24 | 23 | ex 412 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 finSupp cfsupp 9288 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 Σg cgsu 17379 LModclmod 20798 LSubSpclss 20869 linC clinc 48386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-gsum 17381 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20800 df-lss 20870 df-linc 48388 |
| This theorem is referenced by: ellcoellss 48417 |
| Copyright terms: Public domain | W3C validator |