Step | Hyp | Ref
| Expression |
1 | | simpl1 1191 |
. . . 4
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ)))) β π β LMod) |
2 | | simprl 769 |
. . . 4
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ)))) β πΉ β ((Baseβ(Scalarβπ)) βm π)) |
3 | | ssexg 5322 |
. . . . . . . 8
β’ ((π β π β§ π β (LSubSpβπ)) β π β V) |
4 | 3 | ancoms 459 |
. . . . . . 7
β’ ((π β (LSubSpβπ) β§ π β π) β π β V) |
5 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
6 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSubSpβπ) =
(LSubSpβπ) |
7 | 5, 6 | lssss 20539 |
. . . . . . . . 9
β’ (π β (LSubSpβπ) β π β (Baseβπ)) |
8 | | sstr 3989 |
. . . . . . . . . . 11
β’ ((π β π β§ π β (Baseβπ)) β π β (Baseβπ)) |
9 | | elpwg 4604 |
. . . . . . . . . . 11
β’ (π β V β (π β π«
(Baseβπ) β π β (Baseβπ))) |
10 | 8, 9 | syl5ibrcom 246 |
. . . . . . . . . 10
β’ ((π β π β§ π β (Baseβπ)) β (π β V β π β π« (Baseβπ))) |
11 | 10 | expcom 414 |
. . . . . . . . 9
β’ (π β (Baseβπ) β (π β π β (π β V β π β π« (Baseβπ)))) |
12 | 7, 11 | syl 17 |
. . . . . . . 8
β’ (π β (LSubSpβπ) β (π β π β (π β V β π β π« (Baseβπ)))) |
13 | 12 | imp 407 |
. . . . . . 7
β’ ((π β (LSubSpβπ) β§ π β π) β (π β V β π β π« (Baseβπ))) |
14 | 4, 13 | mpd 15 |
. . . . . 6
β’ ((π β (LSubSpβπ) β§ π β π) β π β π« (Baseβπ)) |
15 | 14 | 3adant1 1130 |
. . . . 5
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β π β π« (Baseβπ)) |
16 | 15 | adantr 481 |
. . . 4
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ)))) β π β π« (Baseβπ)) |
17 | | lincval 47043 |
. . . 4
β’ ((π β LMod β§ πΉ β
((Baseβ(Scalarβπ)) βm π) β§ π β π« (Baseβπ)) β (πΉ( linC βπ)π) = (π Ξ£g (π£ β π β¦ ((πΉβπ£)( Β·π
βπ)π£)))) |
18 | 1, 2, 16, 17 | syl3anc 1371 |
. . 3
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ)))) β (πΉ( linC βπ)π) = (π Ξ£g (π£ β π β¦ ((πΉβπ£)( Β·π
βπ)π£)))) |
19 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
20 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
21 | 6, 19, 20 | gsumlsscl 47012 |
. . . 4
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β ((πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ))) β (π Ξ£g (π£ β π β¦ ((πΉβπ£)( Β·π
βπ)π£))) β π)) |
22 | 21 | imp 407 |
. . 3
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ)))) β (π Ξ£g (π£ β π β¦ ((πΉβπ£)( Β·π
βπ)π£))) β π) |
23 | 18, 22 | eqeltrd 2833 |
. 2
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ)))) β (πΉ( linC βπ)π) β π) |
24 | 23 | ex 413 |
1
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β ((πΉ β ((Baseβ(Scalarβπ)) βm π) β§ πΉ finSupp
(0gβ(Scalarβπ))) β (πΉ( linC βπ)π) β π)) |