MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1bdd2 Structured version   Visualization version   GIF version

Theorem o1bdd2 14749
Description: If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1bdd2.1 (𝜑𝐴 ⊆ ℝ)
o1bdd2.2 (𝜑𝐶 ∈ ℝ)
o1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
o1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
o1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
o1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝐵) ≤ 𝑀)
Assertion
Ref Expression
o1bdd2 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝑚,𝑀,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem o1bdd2
StepHypRef Expression
1 o1bdd2.1 . 2 (𝜑𝐴 ⊆ ℝ)
2 o1bdd2.2 . 2 (𝜑𝐶 ∈ ℝ)
3 o1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
43abscld 14647 . 2 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
5 o1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
63lo1o12 14741 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
75, 6mpbid 224 . 2 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))
8 o1bdd2.5 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
9 o1bdd2.6 . 2 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝐵) ≤ 𝑀)
101, 2, 4, 7, 8, 9lo1bdd2 14732 1 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wcel 2048  wral 3082  wrex 3083  wss 3825   class class class wbr 4923  cmpt 5002  cfv 6182  cc 10325  cr 10326   < clt 10466  cle 10467  abscabs 14444  𝑂(1)co1 14694  ≤𝑂(1)clo1 14695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-pm 8201  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-ico 12553  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-o1 14698  df-lo1 14699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator