MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1bdd2 Structured version   Visualization version   GIF version

Theorem o1bdd2 15448
Description: If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1bdd2.1 (𝜑𝐴 ⊆ ℝ)
o1bdd2.2 (𝜑𝐶 ∈ ℝ)
o1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
o1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
o1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
o1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝐵) ≤ 𝑀)
Assertion
Ref Expression
o1bdd2 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝑚,𝑀,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem o1bdd2
StepHypRef Expression
1 o1bdd2.1 . 2 (𝜑𝐴 ⊆ ℝ)
2 o1bdd2.2 . 2 (𝜑𝐶 ∈ ℝ)
3 o1bdd2.3 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
43abscld 15346 . 2 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
5 o1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
63lo1o12 15440 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
75, 6mpbid 232 . 2 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))
8 o1bdd2.5 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
9 o1bdd2.6 . 2 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝐵) ≤ 𝑀)
101, 2, 4, 7, 8, 9lo1bdd2 15431 1 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  cfv 6481  cc 11004  cr 11005   < clt 11146  cle 11147  abscabs 15141  𝑂(1)co1 15393  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-o1 15397  df-lo1 15398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator