Proof of Theorem dihord11c
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊))) |
2 | | simp2 1136 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
3 | | simp31 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
4 | | simp32 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑓 ∈ 𝑇) |
5 | | simp33 1210 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) |
6 | | dihjust.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
7 | | dihjust.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
8 | | dihjust.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
9 | | dihjust.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
10 | | dihjust.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
11 | | dihjust.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
12 | | dihjust.i |
. . . 4
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
13 | | dihjust.J |
. . . 4
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
14 | | dihjust.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
15 | | dihjust.s |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
16 | | dihord2c.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
17 | | dihord2c.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
18 | | dihord2c.o |
. . . 4
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
19 | | dihord2.p |
. . . 4
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
20 | | dihord2.e |
. . . 4
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
21 | | dihord2.d |
. . . 4
⊢ + =
(+g‘𝑈) |
22 | | dihord2.g |
. . . 4
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
23 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | dihord11b 39236 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
24 | 1, 2, 3, 4, 5, 23 | syl32anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
25 | | simp11 1202 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | 11, 14, 25 | dvhlmod 39124 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑈 ∈ LMod) |
27 | | eqid 2738 |
. . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
28 | 27 | lsssssubg 20220 |
. . . . 5
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
29 | 26, 28 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
30 | | simp13 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) |
31 | 7, 10, 11, 14, 13, 27 | diclss 39207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → (𝐽‘𝑁) ∈ (LSubSp‘𝑈)) |
32 | 25, 30, 31 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐽‘𝑁) ∈ (LSubSp‘𝑈)) |
33 | 29, 32 | sseldd 3922 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐽‘𝑁) ∈ (SubGrp‘𝑈)) |
34 | | simp11l 1283 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ HL) |
35 | 34 | hllatd 37378 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ Lat) |
36 | | simp2r 1199 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑌 ∈ 𝐵) |
37 | | simp11r 1284 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐻) |
38 | 6, 11 | lhpbase 38012 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐵) |
40 | 6, 9 | latmcl 18158 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
41 | 35, 36, 39, 40 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
42 | 6, 7, 9 | latmle2 18183 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
43 | 35, 36, 39, 42 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
44 | 6, 7, 11, 14, 12, 27 | diblss 39184 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
45 | 25, 41, 43, 44 | syl12anc 834 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐼‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
46 | 29, 45 | sseldd 3922 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐼‘(𝑌 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) |
47 | 21, 15 | lsmelval 19254 |
. . 3
⊢ (((𝐽‘𝑁) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑌 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) → (〈𝑓, 𝑂〉 ∈ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ↔ ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧))) |
48 | 33, 46, 47 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (〈𝑓, 𝑂〉 ∈ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ↔ ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧))) |
49 | 24, 48 | mpbid 231 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧)) |