Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > absnpncan2d | Structured version Visualization version GIF version |
Description: Triangular inequality, combined with cancellation law for subtraction (applied twice). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
absnpncan2d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
absnpncan2d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
absnpncan2d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
absnpncan2d.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
absnpncan2d | ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ≤ (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absnpncan2d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | absnpncan2d.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
3 | 1, 2 | subcld 11189 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐷) ∈ ℂ) |
4 | 3 | abscld 15000 | . 2 ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ∈ ℝ) |
5 | absnpncan2d.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | 1, 5 | subcld 11189 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) ∈ ℂ) |
7 | 6 | abscld 15000 | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) ∈ ℝ) |
8 | 5, 2 | subcld 11189 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐷) ∈ ℂ) |
9 | 8 | abscld 15000 | . . 3 ⊢ (𝜑 → (abs‘(𝐶 − 𝐷)) ∈ ℝ) |
10 | 7, 9 | readdcld 10862 | . 2 ⊢ (𝜑 → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐷))) ∈ ℝ) |
11 | absnpncan2d.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
12 | 1, 11 | subcld 11189 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
13 | 12 | abscld 15000 | . . . 4 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
14 | 11, 5 | subcld 11189 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℂ) |
15 | 14 | abscld 15000 | . . . 4 ⊢ (𝜑 → (abs‘(𝐵 − 𝐶)) ∈ ℝ) |
16 | 13, 15 | readdcld 10862 | . . 3 ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) ∈ ℝ) |
17 | 16, 9 | readdcld 10862 | . 2 ⊢ (𝜑 → (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷))) ∈ ℝ) |
18 | 1, 2, 5 | abs3difd 15024 | . 2 ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐷)))) |
19 | 1, 5, 11 | abs3difd 15024 | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶)))) |
20 | 7, 16, 9, 19 | leadd1dd 11446 | . 2 ⊢ (𝜑 → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐷))) ≤ (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷)))) |
21 | 4, 10, 17, 18, 20 | letrd 10989 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐷)) ≤ (((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 𝐶))) + (abs‘(𝐶 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 + caddc 10732 ≤ cle 10868 − cmin 11062 abscabs 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 |
This theorem is referenced by: absnpncan3d 42519 |
Copyright terms: Public domain | W3C validator |