| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatval21sw | Structured version Visualization version GIF version | ||
| Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.) |
| Ref | Expression |
|---|---|
| ccatval21sw | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl 14446 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
| 2 | 1 | nn0zd 12500 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ) |
| 3 | lennncl 14447 | . . . . . 6 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ) | |
| 5 | nnz 12495 | . . . . . . . 8 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ) | |
| 6 | zaddcl 12518 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) | |
| 7 | 5, 6 | sylan2 593 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) |
| 8 | nngt0 12162 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → 0 < (♯‘𝐵)) | |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → 0 < (♯‘𝐵)) |
| 10 | nnre 12138 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ) | |
| 11 | zre 12478 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ) | |
| 12 | ltaddpos 11613 | . . . . . . . . 9 ⊢ (((♯‘𝐵) ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 14 | 9, 13 | mpbid 232 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))) |
| 15 | 4, 7, 14 | 3jca 1128 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 16 | 2, 3, 15 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 17 | 16 | 3impb 1114 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 18 | fzolb 13571 | . . . 4 ⊢ ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
| 19 | 17, 18 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
| 20 | ccatval2 14491 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) | |
| 21 | 19, 20 | syld3an3 1411 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) |
| 22 | 1 | nn0cnd 12450 | . . . . 5 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ) |
| 23 | 22 | subidd 11466 | . . . 4 ⊢ (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) − (♯‘𝐴)) = 0) |
| 24 | 23 | fveq2d 6832 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
| 25 | 24 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
| 26 | 21, 25 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4282 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 ℝcr 11011 0cc0 11012 + caddc 11015 < clt 11152 − cmin 11350 ℕcn 12131 ℤcz 12474 ..^cfzo 13560 ♯chash 14243 Word cword 14426 ++ cconcat 14483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-concat 14484 |
| This theorem is referenced by: clwwlkccatlem 29976 |
| Copyright terms: Public domain | W3C validator |