| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatval21sw | Structured version Visualization version GIF version | ||
| Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.) |
| Ref | Expression |
|---|---|
| ccatval21sw | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl 14477 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
| 2 | 1 | nn0zd 12534 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ) |
| 3 | lennncl 14478 | . . . . . 6 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ) | |
| 5 | nnz 12529 | . . . . . . . 8 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ) | |
| 6 | zaddcl 12552 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) | |
| 7 | 5, 6 | sylan2 593 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) |
| 8 | nngt0 12196 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → 0 < (♯‘𝐵)) | |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → 0 < (♯‘𝐵)) |
| 10 | nnre 12172 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ) | |
| 11 | zre 12512 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ) | |
| 12 | ltaddpos 11647 | . . . . . . . . 9 ⊢ (((♯‘𝐵) ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 14 | 9, 13 | mpbid 232 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))) |
| 15 | 4, 7, 14 | 3jca 1128 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 16 | 2, 3, 15 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 17 | 16 | 3impb 1114 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 18 | fzolb 13605 | . . . 4 ⊢ ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
| 19 | 17, 18 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
| 20 | ccatval2 14522 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) | |
| 21 | 19, 20 | syld3an3 1411 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) |
| 22 | 1 | nn0cnd 12484 | . . . . 5 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ) |
| 23 | 22 | subidd 11500 | . . . 4 ⊢ (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) − (♯‘𝐴)) = 0) |
| 24 | 23 | fveq2d 6845 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
| 25 | 24 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
| 26 | 21, 25 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 class class class wbr 5102 ‘cfv 6500 (class class class)co 7370 ℝcr 11046 0cc0 11047 + caddc 11050 < clt 11187 − cmin 11384 ℕcn 12165 ℤcz 12508 ..^cfzo 13594 ♯chash 14274 Word cword 14457 ++ cconcat 14514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-n0 12422 df-z 12509 df-uz 12773 df-fz 13448 df-fzo 13595 df-hash 14275 df-word 14458 df-concat 14515 |
| This theorem is referenced by: clwwlkccatlem 29970 |
| Copyright terms: Public domain | W3C validator |