MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval21sw Structured version   Visualization version   GIF version

Theorem ccatval21sw 13751
Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
ccatval21sw ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0))

Proof of Theorem ccatval21sw
StepHypRef Expression
1 lencl 13697 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
21nn0zd 11901 . . . . . 6 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
3 lennncl 13698 . . . . . 6 ((𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
4 simpl 475 . . . . . . 7 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
5 nnz 11820 . . . . . . . 8 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ)
6 zaddcl 11838 . . . . . . . 8 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
75, 6sylan2 583 . . . . . . 7 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
8 nngt0 11474 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ → 0 < (♯‘𝐵))
98adantl 474 . . . . . . . 8 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → 0 < (♯‘𝐵))
10 nnre 11449 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ)
11 zre 11800 . . . . . . . . 9 ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ)
12 ltaddpos 10933 . . . . . . . . 9 (((♯‘𝐵) ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
1310, 11, 12syl2anr 587 . . . . . . . 8 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
149, 13mpbid 224 . . . . . . 7 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
154, 7, 143jca 1108 . . . . . 6 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
162, 3, 15syl2an 586 . . . . 5 ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
17163impb 1095 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
18 fzolb 12863 . . . 4 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
1917, 18sylibr 226 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
20 ccatval2 13744 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴))))
2119, 20syld3an3 1389 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴))))
221nn0cnd 11772 . . . . 5 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
2322subidd 10788 . . . 4 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) − (♯‘𝐴)) = 0)
2423fveq2d 6505 . . 3 (𝐴 ∈ Word 𝑉 → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0))
25243ad2ant1 1113 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0))
2621, 25eqtrd 2814 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  c0 4180   class class class wbr 4930  cfv 6190  (class class class)co 6978  cr 10336  0cc0 10337   + caddc 10340   < clt 10476  cmin 10672  cn 11441  cz 11796  ..^cfzo 12852  chash 13508  Word cword 13675   ++ cconcat 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-hash 13509  df-word 13676  df-concat 13737
This theorem is referenced by:  clwwlkccatlem  27498
  Copyright terms: Public domain W3C validator