![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatval21sw | Structured version Visualization version GIF version |
Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.) |
Ref | Expression |
---|---|
ccatval21sw | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 14568 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
2 | 1 | nn0zd 12637 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ) |
3 | lennncl 14569 | . . . . . 6 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ) | |
4 | simpl 482 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ) | |
5 | nnz 12632 | . . . . . . . 8 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ) | |
6 | zaddcl 12655 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) | |
7 | 5, 6 | sylan2 593 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) |
8 | nngt0 12295 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → 0 < (♯‘𝐵)) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → 0 < (♯‘𝐵)) |
10 | nnre 12271 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ) | |
11 | zre 12615 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ) | |
12 | ltaddpos 11751 | . . . . . . . . 9 ⊢ (((♯‘𝐵) ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
13 | 10, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
14 | 9, 13 | mpbid 232 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))) |
15 | 4, 7, 14 | 3jca 1127 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
16 | 2, 3, 15 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
17 | 16 | 3impb 1114 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
18 | fzolb 13702 | . . . 4 ⊢ ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
19 | 17, 18 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
20 | ccatval2 14613 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) | |
21 | 19, 20 | syld3an3 1408 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) |
22 | 1 | nn0cnd 12587 | . . . . 5 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ) |
23 | 22 | subidd 11606 | . . . 4 ⊢ (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) − (♯‘𝐴)) = 0) |
24 | 23 | fveq2d 6911 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
25 | 24 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
26 | 21, 25 | eqtrd 2775 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 + caddc 11156 < clt 11293 − cmin 11490 ℕcn 12264 ℤcz 12611 ..^cfzo 13691 ♯chash 14366 Word cword 14549 ++ cconcat 14605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 |
This theorem is referenced by: clwwlkccatlem 30018 |
Copyright terms: Public domain | W3C validator |