Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1533
∈ wcel 2098 (class class class)co 7426
ℂcc 11144 0cc0 11146
+ caddc 11149 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-ltxr 11291 |
This theorem is referenced by: ltaddneg
11467 subsub2
11526 negsub
11546 ltaddpos
11742 addge01
11762 add20
11764 nnge1
12278 nnnn0addcl
12540 un0addcl
12543 uzaddcl
12926 xaddrid
13260 fzosubel3
13733 expadd
14109 faclbnd4lem4
14295 faclbnd6
14298 hashgadd
14376 ccatrid
14577 pfxmpt
14668 pfxfv
14672 pfxswrd
14696 pfxccatin12lem1
14718 pfxccatin12lem2
14721 swrdccat3blem
14729 cshweqrep
14811 relexpaddg
15040 reim0b
15106 rereb
15107 immul2
15124 max0add
15297 iseraltlem2
15669 fsumsplit
15727 sumsplit
15754 binomfallfaclem2
16024 pwp1fsum
16375 bitsinv1lem
16423 sadadd2lem2
16432 sadcaddlem
16439 bezoutlem1
16522 pcadd
16865 pcadd2
16866 pcmpt
16868 vdwapun
16950 vdwlem1
16957 mulgnn0dir
19066 psgnunilem2
19457 sylow1lem1
19560 efginvrel2
19689 efgredleme
19705 efgcpbllemb
19717 frgpnabllem1
19835 regsumfsum
21375 pzriprnglem10
21423 regsumsupp
21561 mplcoe5
21985 psdmul
22097 xrsxmet
24745 reparphti
24943 reparphtiOLD
24944 cphpyth
25164 minveclem6
25382 ovolunnul
25449 voliunlem3
25501 ovolioo
25517 itg2splitlem
25698 itg2split
25699 itgrevallem1
25744 itgsplitioo
25787 ditgsplit
25810 dvnadd
25879 dvlipcn
25947 ply1divex
26092 dvntaylp
26326 ulmshft
26346 abelthlem6
26393 cosmpi
26443 sinppi
26444 sinhalfpip
26447 logrnaddcl
26528 affineequiv
26775 chordthmlem3
26786 atanlogaddlem
26865 atanlogsublem
26867 leibpi
26894 scvxcvx
26938 dmgmn0
26978 lgamgulmlem2
26982 lgambdd
26989 logexprlim
27178 2sqblem
27384 2sq2
27386 2sqnn
27392 dchrvmasum2if
27450 dchrvmasumlem
27476 axcontlem8
28802 elntg2
28816 crctcshlem4
29651 eupth2lem3lem6
30063 ipidsq
30540 minvecolem6
30712 normpyc
30976 pjspansn
31407 lnfnmuli
31874 hstoh
32062 archirngz
32918 indsumin
33674 esumpfinvallem
33726 signsvtp
34248 signlem0
34252 fsum2dsub
34272 cvxpconn
34885 cvxsconn
34886 elmrsubrn
35163 faclim2
35375 fwddifn0
35793 fwddifnp1
35794 dnizeq0
35983 knoppndvlem6
36025 bj-bary1lem
36822 poimirlem1
37127 poimirlem5
37131 poimirlem6
37132 poimirlem7
37133 poimirlem11
37137 poimirlem12
37138 poimirlem17
37143 poimirlem20
37146 poimirlem22
37148 poimirlem24
37150 poimirlem25
37151 poimirlem29
37155 poimirlem31
37157 mblfinlem2
37164 mbfposadd
37173 itg2addnc
37180 itgaddnclem2
37185 ftc1anclem5
37203 ftc1anclem8
37206 areacirc
37219 lcmineqlem4
41535 lcmineqlem18
41549 aks4d1p1p7
41577 aks4d1p3
41581 posbezout
41603 primrootspoweq0
41609 sticksstones10
41659 sticksstones12a
41661 metakunt29
41717 metakunt30
41718 3cubeslem2
42136 3cubeslem3r
42138 pell1qrgaplem
42324 jm2.19lem3
42443 jm2.25
42451 relexpaddss
43179 int-add01d
43645 binomcxplemnn0
43817 fperiodmullem
44714 xralrple3
44785 sumnnodd
45047 fprodaddrecnncnvlem
45326 ioodvbdlimc1lem2
45349 volioc
45389 volico
45400 stoweidlem11
45428 stoweidlem26
45443 stirlinglem12
45502 fourierdlem4
45528 fourierdlem42
45566 fourierdlem60
45583 fourierdlem61
45584 fourierdlem92
45615 fourierdlem107
45630 fouriersw
45648 etransclem24
45675 etransclem35
45686 hoidmvlelem2
46013 hspmbllem1
46043 sharhght
46282 deccarry
46720 nn0mnd
47319 altgsumbcALT
47495 itcovalpclem1
47821 eenglngeehlnmlem2
47889 line2y
47906 itschlc0xyqsol1
47917 itschlc0xyqsol
47918 2itscp
47932 |