Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 (class class class)co 7408
ℂcc 11107 0cc0 11109
+ caddc 11112 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 |
This theorem is referenced by: ltaddneg
11428 subsub2
11487 negsub
11507 ltaddpos
11703 addge01
11723 add20
11725 nnge1
12239 nnnn0addcl
12501 un0addcl
12504 uzaddcl
12887 xaddrid
13219 fzosubel3
13692 expadd
14069 faclbnd4lem4
14255 faclbnd6
14258 hashgadd
14336 ccatrid
14536 pfxmpt
14627 pfxfv
14631 pfxswrd
14655 pfxccatin12lem1
14677 pfxccatin12lem2
14680 swrdccat3blem
14688 cshweqrep
14770 relexpaddg
14999 reim0b
15065 rereb
15066 immul2
15083 max0add
15256 iseraltlem2
15628 fsumsplit
15686 sumsplit
15713 binomfallfaclem2
15983 pwp1fsum
16333 bitsinv1lem
16381 sadadd2lem2
16390 sadcaddlem
16397 bezoutlem1
16480 pcadd
16821 pcadd2
16822 pcmpt
16824 vdwapun
16906 vdwlem1
16913 mulgnn0dir
18983 psgnunilem2
19362 sylow1lem1
19465 efginvrel2
19594 efgredleme
19610 efgcpbllemb
19622 frgpnabllem1
19740 regsumfsum
21012 regsumsupp
21174 mplcoe5
21594 xrsxmet
24324 reparphti
24512 cphpyth
24732 minveclem6
24950 ovolunnul
25016 voliunlem3
25068 ovolioo
25084 itg2splitlem
25265 itg2split
25266 itgrevallem1
25311 itgsplitioo
25354 ditgsplit
25377 dvnadd
25445 dvlipcn
25510 ply1divex
25653 dvntaylp
25882 ulmshft
25901 abelthlem6
25947 cosmpi
25997 sinppi
25998 sinhalfpip
26001 logrnaddcl
26082 affineequiv
26325 chordthmlem3
26336 atanlogaddlem
26415 atanlogsublem
26417 leibpi
26444 scvxcvx
26487 dmgmn0
26527 lgamgulmlem2
26531 lgambdd
26538 logexprlim
26725 2sqblem
26931 2sq2
26933 2sqnn
26939 dchrvmasum2if
26997 dchrvmasumlem
27023 axcontlem8
28226 elntg2
28240 crctcshlem4
29071 eupth2lem3lem6
29483 ipidsq
29958 minvecolem6
30130 normpyc
30394 pjspansn
30825 lnfnmuli
31292 hstoh
31480 archirngz
32330 indsumin
33015 esumpfinvallem
33067 signsvtp
33589 signlem0
33593 fsum2dsub
33614 cvxpconn
34228 cvxsconn
34229 elmrsubrn
34506 faclim2
34713 fwddifn0
35131 fwddifnp1
35132 gg-reparphti
35167 dnizeq0
35346 knoppndvlem6
35388 bj-bary1lem
36186 poimirlem1
36484 poimirlem5
36488 poimirlem6
36489 poimirlem7
36490 poimirlem11
36494 poimirlem12
36495 poimirlem17
36500 poimirlem20
36503 poimirlem22
36505 poimirlem24
36507 poimirlem25
36508 poimirlem29
36512 poimirlem31
36514 mblfinlem2
36521 mbfposadd
36530 itg2addnc
36537 itgaddnclem2
36542 ftc1anclem5
36560 ftc1anclem8
36563 areacirc
36576 lcmineqlem4
40892 lcmineqlem18
40906 aks4d1p1p7
40934 aks4d1p3
40938 sticksstones10
40966 sticksstones12a
40968 metakunt29
41008 metakunt30
41009 3cubeslem2
41413 3cubeslem3r
41415 pell1qrgaplem
41601 jm2.19lem3
41720 jm2.25
41728 relexpaddss
42459 int-add01d
42926 binomcxplemnn0
43098 fperiodmullem
44003 xralrple3
44074 sumnnodd
44336 fprodaddrecnncnvlem
44615 ioodvbdlimc1lem2
44638 volioc
44678 volico
44689 stoweidlem11
44717 stoweidlem26
44732 stirlinglem12
44791 fourierdlem4
44817 fourierdlem42
44855 fourierdlem60
44872 fourierdlem61
44873 fourierdlem92
44904 fourierdlem107
44919 fouriersw
44937 etransclem24
44964 etransclem35
44975 hoidmvlelem2
45302 hspmbllem1
45332 sharhght
45571 deccarry
46009 nn0mnd
46579 pzriprnglem10
46804 altgsumbcALT
47019 itcovalpclem1
47346 eenglngeehlnmlem2
47414 line2y
47431 itschlc0xyqsol1
47442 itschlc0xyqsol
47443 2itscp
47457 |