![]() |
Metamath
Proof Explorer Theorem List (p. 117 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | negreb 11601 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | ||
Theorem | peano2cnm 11602 | "Reverse" second Peano postulate analogue for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | ||
Theorem | peano2rem 11603 | "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007.) |
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | ||
Theorem | negcli 11604 | Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ -𝐴 ∈ ℂ | ||
Theorem | negidi 11605 | Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐴) = 0 | ||
Theorem | negnegi 11606 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ --𝐴 = 𝐴 | ||
Theorem | subidi 11607 | Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐴) = 0 | ||
Theorem | subid1i 11608 | Identity law for subtraction. (Contributed by NM, 29-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 0) = 𝐴 | ||
Theorem | negne0bi 11609 | A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) | ||
Theorem | negrebi 11610 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ) | ||
Theorem | negne0i 11611 | The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ -𝐴 ≠ 0 | ||
Theorem | subcli 11612 | Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℂ | ||
Theorem | pncan3i 11613 | Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + (𝐵 − 𝐴)) = 𝐵 | ||
Theorem | negsubi 11614 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) | ||
Theorem | subnegi 11615 | Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) | ||
Theorem | subeq0i 11616 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) | ||
Theorem | neg11i 11617 | Negative is one-to-one. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵) | ||
Theorem | negcon1i 11618 | Negative contraposition law. (Contributed by NM, 25-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴) | ||
Theorem | negcon2i 11619 | Negative contraposition law. (Contributed by NM, 25-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 = -𝐵 ↔ 𝐵 = -𝐴) | ||
Theorem | negdii 11620 | Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by OpenAI, 25-Mar-2011.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) | ||
Theorem | negsubdii 11621 | Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (-𝐴 + 𝐵) | ||
Theorem | negsubdi2i 11622 | Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (𝐵 − 𝐴) | ||
Theorem | subaddi 11623 | Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) | ||
Theorem | subadd2i 11624 | Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴) | ||
Theorem | subaddrii 11625 | Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐵 + 𝐶) = 𝐴 ⇒ ⊢ (𝐴 − 𝐵) = 𝐶 | ||
Theorem | subsub23i 11626 | Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵) | ||
Theorem | addsubassi 11627 | Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶)) | ||
Theorem | addsubi 11628 | Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵) | ||
Theorem | subcani 11629 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶) | ||
Theorem | subcan2i 11630 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵) | ||
Theorem | pnncani 11631 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶) | ||
Theorem | addsub4i 11632 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷)) | ||
Theorem | 0reALT 11633 | Alternate proof of 0re 11292. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 0 ∈ ℝ | ||
Theorem | negcld 11634 | Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℂ) | ||
Theorem | subidd 11635 | Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐴) = 0) | ||
Theorem | subid1d 11636 | Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 0) = 𝐴) | ||
Theorem | negidd 11637 | Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + -𝐴) = 0) | ||
Theorem | negnegd 11638 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → --𝐴 = 𝐴) | ||
Theorem | negeq0d 11639 | A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
Theorem | negne0bd 11640 | A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) | ||
Theorem | negcon1d 11641 | Contraposition law for unary minus. Deduction form of negcon1 11588. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
Theorem | negcon1ad 11642 | Contraposition law for unary minus. One-way deduction form of negcon1 11588. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐵 = 𝐴) | ||
Theorem | neg11ad 11643 | The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 11587. Generalization of neg11d 11659. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | negned 11644 | If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 11659. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → -𝐴 ≠ -𝐵) | ||
Theorem | negne0d 11645 | The negative of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → -𝐴 ≠ 0) | ||
Theorem | negrebd 11646 | The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | subcld 11647 | Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) | ||
Theorem | pncand 11648 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
Theorem | pncan2d 11649 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | ||
Theorem | pncan3d 11650 | Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
Theorem | npcand 11651 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
Theorem | nncand 11652 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
Theorem | negsubd 11653 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
Theorem | subnegd 11654 | Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
Theorem | subeq0d 11655 | If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | subne0d 11656 | Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) | ||
Theorem | subeq0ad 11657 | The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11562. Generalization of subeq0d 11655. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | subne0ad 11658 | If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d 11656. Contrapositive of subeq0bd 11716. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | neg11d 11659 | If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = -𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | negdid 11660 | Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
Theorem | negdi2d 11661 | Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
Theorem | negsubdid 11662 | Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
Theorem | negsubdi2d 11663 | Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
Theorem | neg2subd 11664 | Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
Theorem | subaddd 11665 | Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | subadd2d 11666 | Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) | ||
Theorem | addsubassd 11667 | Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | ||
Theorem | addsubd 11668 | Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | ||
Theorem | subadd23d 11669 | Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) | ||
Theorem | addsub12d 11670 | Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) | ||
Theorem | npncand 11671 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) | ||
Theorem | nppcand 11672 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) | ||
Theorem | nppcan2d 11673 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | ||
Theorem | nppcan3d 11674 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) | ||
Theorem | subsubd 11675 | Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | ||
Theorem | subsub2d 11676 | Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) | ||
Theorem | subsub3d 11677 | Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | ||
Theorem | subsub4d 11678 | Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | ||
Theorem | sub32d 11679 | Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | ||
Theorem | nnncand 11680 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | ||
Theorem | nnncan1d 11681 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | ||
Theorem | nnncan2d 11682 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | ||
Theorem | npncan3d 11683 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | ||
Theorem | pnpcand 11684 | Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | ||
Theorem | pnpcan2d 11685 | Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | ||
Theorem | pnncand 11686 | Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | ||
Theorem | ppncand 11687 | Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | ||
Theorem | subcand 11688 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | subcan2d 11689 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | subcanad 11690 | Cancellation law for subtraction. Deduction form of subcan 11591. Generalization of subcand 11688. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | subneintrd 11691 | Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand 11688. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≠ (𝐴 − 𝐶)) | ||
Theorem | subcan2ad 11692 | Cancellation law for subtraction. Deduction form of subcan2 11561. Generalization of subcan2d 11689. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | subneintr2d 11693 | Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d 11689. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) | ||
Theorem | addsub4d 11694 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | ||
Theorem | subadd4d 11695 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | ||
Theorem | sub4d 11696 | Rearrangement of 4 terms in a subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | ||
Theorem | 2addsubd 11697 | Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) | ||
Theorem | addsubeq4d 11698 | Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) | ||
Theorem | subeqxfrd 11699 | Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐷)) | ||
Theorem | mvlraddd 11700 | Move the right term in a sum on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 − 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |