| Metamath
Proof Explorer Theorem List (p. 117 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | addlsub 11601 | Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) | ||
| Theorem | addrsub 11602 | Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐵 = (𝐶 − 𝐴))) | ||
| Theorem | subexsub 11603 | A subtraction law: Exchanging the subtrahend and the result of the subtraction. (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) ↔ 𝐵 = (𝐶 − 𝐴))) | ||
| Theorem | addid0 11604 | If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.) |
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) | ||
| Theorem | addn0nid 11605 | Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021.) |
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑌 ≠ 0) → (𝑋 + 𝑌) ≠ 𝑋) | ||
| Theorem | pnpncand 11606 | Addition/subtraction cancellation law. (Contributed by Scott Fenton, 14-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) + (𝐶 − 𝐵)) = 𝐴) | ||
| Theorem | subeqrev 11607 | Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ↔ (𝐵 − 𝐴) = (𝐷 − 𝐶))) | ||
| Theorem | addeq0 11608 | Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)) | ||
| Theorem | pncan1 11609 | Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴) | ||
| Theorem | npcan1 11610 | Cancellation law for subtraction and addition with 1. (Contributed by Alexander van der Vekens, 5-Oct-2018.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴) | ||
| Theorem | subeq0bd 11611 | If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 11550. Converse of subeq0d 11548. Contrapositive of subne0ad 11551. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = 0) | ||
| Theorem | renegcld 11612 | Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℝ) | ||
| Theorem | resubcld 11613 | Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) | ||
| Theorem | negn0 11614* | The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅) | ||
| Theorem | negf1o 11615* | Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐹:𝐴–1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) | ||
| Theorem | kcnktkm1cn 11616 | k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
| ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) | ||
| Theorem | muladd 11617 | Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
| Theorem | subdi 11618 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) | ||
| Theorem | subdir 11619 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | ||
| Theorem | ine0 11620 | The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| ⊢ i ≠ 0 | ||
| Theorem | mulneg1 11621 | Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | ||
| Theorem | mulneg2 11622 | The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | ||
| Theorem | mulneg12 11623 | Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵)) | ||
| Theorem | mul2neg 11624 | Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | submul2 11625 | Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶))) | ||
| Theorem | mulm1 11626 | Product with minus one is negative. (Contributed by NM, 16-Nov-1999.) |
| ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | ||
| Theorem | addneg1mul 11627 | Addition with product with minus one is a subtraction. (Contributed by AV, 18-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (-1 · 𝐵)) = (𝐴 − 𝐵)) | ||
| Theorem | mulsub 11628 | Product of two differences. (Contributed by NM, 14-Jan-2006.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
| Theorem | mulsub2 11629 | Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = ((𝐵 − 𝐴) · (𝐷 − 𝐶))) | ||
| Theorem | mulm1i 11630 | Product with minus one is negative. (Contributed by NM, 31-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-1 · 𝐴) = -𝐴 | ||
| Theorem | mulneg1i 11631 | Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 · 𝐵) = -(𝐴 · 𝐵) | ||
| Theorem | mulneg2i 11632 | Product with negative is negative of product. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · -𝐵) = -(𝐴 · 𝐵) | ||
| Theorem | mul2negi 11633 | Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 · -𝐵) = (𝐴 · 𝐵) | ||
| Theorem | subdii 11634 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)) | ||
| Theorem | subdiri 11635 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 8-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) | ||
| Theorem | muladdi 11636 | Product of two sums. (Contributed by NM, 17-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) | ||
| Theorem | mulm1d 11637 | Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) | ||
| Theorem | mulneg1d 11638 | Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | ||
| Theorem | mulneg2d 11639 | Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | ||
| Theorem | mul2negd 11640 | Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | subdid 11641 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) | ||
| Theorem | subdird 11642 | Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | ||
| Theorem | muladdd 11643 | Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
| Theorem | mulsubd 11644 | Product of two differences. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵)))) | ||
| Theorem | muls1d 11645 | Multiplication by one minus a number. (Contributed by Scott Fenton, 23-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 − 1)) = ((𝐴 · 𝐵) − 𝐴)) | ||
| Theorem | mulsubfacd 11646 | Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) | ||
| Theorem | addmulsub 11647 | The product of a sum and a difference. (Contributed by AV, 5-Mar-2023.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 − 𝐷)) = (((𝐴 · 𝐶) + (𝐵 · 𝐶)) − ((𝐴 · 𝐷) + (𝐵 · 𝐷)))) | ||
| Theorem | subaddmulsub 11648 | The difference with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐸 − ((𝐴 + 𝐵) · (𝐶 − 𝐷))) = (((𝐸 − (𝐴 · 𝐶)) − (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷)))) | ||
| Theorem | mulsubaddmulsub 11649 | A special difference of a product with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 · 𝐶) − ((𝐴 + 𝐵) · (𝐶 − 𝐷))) = (((𝐴 · 𝐷) + (𝐵 · 𝐷)) − (𝐴 · 𝐶))) | ||
| Theorem | gt0ne0 11650 | Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | ||
| Theorem | lt0ne0 11651 | A number which is less than zero is not zero. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ≠ 0) | ||
| Theorem | ltadd1 11652 | Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) | ||
| Theorem | leadd1 11653 | Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))) | ||
| Theorem | leadd2 11654 | Addition to both sides of 'less than or equal to'. (Contributed by NM, 26-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) | ||
| Theorem | ltsubadd 11655 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) | ||
| Theorem | ltsubadd2 11656 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
| Theorem | lesubadd 11657 | 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 + 𝐵))) | ||
| Theorem | lesubadd2 11658 | 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐵 + 𝐶))) | ||
| Theorem | ltaddsub 11659 | 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) | ||
| Theorem | ltaddsub2 11660 | 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐵 < (𝐶 − 𝐴))) | ||
| Theorem | leaddsub 11661 | 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) | ||
| Theorem | leaddsub2 11662 | 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐵 ≤ (𝐶 − 𝐴))) | ||
| Theorem | suble 11663 | Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 𝐶 ↔ (𝐴 − 𝐶) ≤ 𝐵)) | ||
| Theorem | lesub 11664 | Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ (𝐵 − 𝐶) ↔ 𝐶 ≤ (𝐵 − 𝐴))) | ||
| Theorem | ltsub23 11665 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ (𝐴 − 𝐶) < 𝐵)) | ||
| Theorem | ltsub13 11666 | 'Less than' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐵 − 𝐶) ↔ 𝐶 < (𝐵 − 𝐴))) | ||
| Theorem | le2add 11667 | Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | ||
| Theorem | ltleadd 11668 | Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | ||
| Theorem | leltadd 11669 | Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | ||
| Theorem | lt2add 11670 | Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | ||
| Theorem | addgt0 11671 | The sum of 2 positive numbers is positive. (Contributed by NM, 1-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) | ||
| Theorem | addgegt0 11672 | The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) | ||
| Theorem | addgtge0 11673 | The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) | ||
| Theorem | addge0 11674 | The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | ||
| Theorem | ltaddpos 11675 | Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
| Theorem | ltaddpos2 11676 | Adding a positive number to another number increases it. (Contributed by NM, 8-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐴 + 𝐵))) | ||
| Theorem | ltsubpos 11677 | Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) | ||
| Theorem | posdif 11678 | Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | ||
| Theorem | lesub1 11679 | Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 − 𝐶) ≤ (𝐵 − 𝐶))) | ||
| Theorem | lesub2 11680 | Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) | ||
| Theorem | ltsub1 11681 | Subtraction from both sides of 'less than'. (Contributed by FL, 3-Jan-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 − 𝐶) < (𝐵 − 𝐶))) | ||
| Theorem | ltsub2 11682 | Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 − 𝐵) < (𝐶 − 𝐴))) | ||
| Theorem | lt2sub 11683 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐷 < 𝐵) → (𝐴 − 𝐵) < (𝐶 − 𝐷))) | ||
| Theorem | le2sub 11684 | Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵) → (𝐴 − 𝐵) ≤ (𝐶 − 𝐷))) | ||
| Theorem | ltneg 11685 | Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) | ||
| Theorem | ltnegcon1 11686 | Contraposition of negative in 'less than'. (Contributed by NM, 8-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)) | ||
| Theorem | ltnegcon2 11687 | Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -𝐵 ↔ 𝐵 < -𝐴)) | ||
| Theorem | leneg 11688 | Negative of both sides of 'less than or equal to'. (Contributed by NM, 12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) | ||
| Theorem | lenegcon1 11689 | Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) | ||
| Theorem | lenegcon2 11690 | Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵 ↔ 𝐵 ≤ -𝐴)) | ||
| Theorem | lt0neg1 11691 | Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | ||
| Theorem | lt0neg2 11692 | Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0)) | ||
| Theorem | le0neg1 11693 | Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | ||
| Theorem | le0neg2 11694 | Comparison of a number and its negative to zero. (Contributed by NM, 24-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | ||
| Theorem | addge01 11695 | A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | ||
| Theorem | addge02 11696 | A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 27-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) | ||
| Theorem | add20 11697 | Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | ||
| Theorem | subge0 11698 | Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | suble0 11699 | Nonpositive subtraction. (Contributed by NM, 20-Mar-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | ||
| Theorem | leaddle0 11700 | The sum of a real number and a second real number is less than the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴 ↔ 𝐵 ≤ 0)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |