MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddrp Structured version   Visualization version   GIF version

Theorem ltaddrp 12997
Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
ltaddrp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))

Proof of Theorem ltaddrp
StepHypRef Expression
1 elrp 12960 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2 ltaddpos 11675 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
32biimpd 229 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
43expcom 413 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵𝐴 < (𝐴 + 𝐵))))
54imp32 418 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 < (𝐴 + 𝐵))
61, 5sylan2b 594 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  +crp 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-rp 12959
This theorem is referenced by:  ltaddrpd  13035  lswccatn0lsw  14563  efgt1  16091  efgsfo  19676  efgredlemd  19681  efgredlem  19684  iccntr  24717  reconnlem2  24723  opnreen  24727  minveclem3b  25335  logimul  26530  emcllem2  26914  emcllem4  26916  emcllem6  26918  perfectlem2  27148  bclbnd  27198  pntibndlem1  27507  pntlemd  27512  pntlemc  27513  pntlemr  27520  pntlemp  27528  smcnlem  30633  dp2ltc  32814  dpgti  32833  ballotlem2  34487  poimir  37654  stoweidlem59  46064  perfectALTVlem2  47727
  Copyright terms: Public domain W3C validator