MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddrp Structured version   Visualization version   GIF version

Theorem ltaddrp 12749
Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
ltaddrp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))

Proof of Theorem ltaddrp
StepHypRef Expression
1 elrp 12714 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2 ltaddpos 11448 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
32biimpd 228 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
43expcom 413 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵𝐴 < (𝐴 + 𝐵))))
54imp32 418 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 < (𝐴 + 𝐵))
61, 5sylan2b 593 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5078  (class class class)co 7268  cr 10854  0cc0 10855   + caddc 10858   < clt 10993  +crp 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-rp 12713
This theorem is referenced by:  ltaddrpd  12787  lswccatn0lsw  14277  efgt1  15806  efgsfo  19326  efgredlemd  19331  efgredlem  19334  iccntr  23965  reconnlem2  23971  opnreen  23975  minveclem3b  24573  logimul  25750  emcllem2  26127  emcllem4  26129  emcllem6  26131  perfectlem2  26359  bclbnd  26409  pntibndlem1  26718  pntlemd  26723  pntlemc  26724  pntlemr  26731  pntlemp  26739  smcnlem  29038  dp2ltc  31140  dpgti  31159  ballotlem2  32434  poimir  35789  stoweidlem59  43554  perfectALTVlem2  45126
  Copyright terms: Public domain W3C validator