![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddrp | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
ltaddrp | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 13016 | . 2 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
2 | ltaddpos 11742 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵 ↔ 𝐴 < (𝐴 + 𝐵))) | |
3 | 2 | biimpd 228 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵 → 𝐴 < (𝐴 + 𝐵))) |
4 | 3 | expcom 412 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → 𝐴 < (𝐴 + 𝐵)))) |
5 | 4 | imp32 417 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 < (𝐴 + 𝐵)) |
6 | 1, 5 | sylan2b 592 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 class class class wbr 5152 (class class class)co 7426 ℝcr 11145 0cc0 11146 + caddc 11149 < clt 11286 ℝ+crp 13014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-ltxr 11291 df-rp 13015 |
This theorem is referenced by: ltaddrpd 13089 lswccatn0lsw 14581 efgt1 16100 efgsfo 19701 efgredlemd 19706 efgredlem 19709 iccntr 24757 reconnlem2 24763 opnreen 24767 minveclem3b 25376 logimul 26568 emcllem2 26949 emcllem4 26951 emcllem6 26953 perfectlem2 27183 bclbnd 27233 pntibndlem1 27542 pntlemd 27547 pntlemc 27548 pntlemr 27555 pntlemp 27563 smcnlem 30527 dp2ltc 32631 dpgti 32650 ballotlem2 34141 poimir 37159 stoweidlem59 45476 perfectALTVlem2 47091 |
Copyright terms: Public domain | W3C validator |