MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posdif Structured version   Visualization version   GIF version

Theorem posdif 11703
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 11520 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
21ancoms 459 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 simpl 483 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 ltaddpos 11700 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
52, 3, 4syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
6 recn 11196 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
7 recn 11196 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 pncan3 11464 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
96, 7, 8syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵𝐴)) = 𝐵)
109breq2d 5159 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵𝐴)) ↔ 𝐴 < 𝐵))
115, 10bitr2d 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5147  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106   + caddc 11109   < clt 11244  cmin 11440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-neg 11443
This theorem is referenced by:  posdifi  11760  posdifd  11797  nnsub  12252  nn0sub  12518  znnsub  12604  rpnnen1lem5  12961  difrp  13008  qbtwnre  13174  eluzgtdifelfzo  13690  subfzo0  13750  expnbnd  14191  expmulnbnd  14194  pfxccatin12lem3  14678  eflt  16056  cos01gt0  16130  ndvdsadd  16349  nn0seqcvgd  16503  prmgaplem7  16986  cshwshashlem2  17026  dvcvx  25528  abelthlem7  25941  sinq12gt0  26008  cosq14gt0  26011  cosne0  26029  tanregt0  26039  logdivlti  26119  logcnlem4  26144  scvxcvx  26479  perfectlem2  26722  rplogsumlem2  26977  dchrisum0flblem1  27000  crctcshwlkn0lem3  29055  crctcshwlkn0lem7  29059  mblfinlem3  36515  mblfinlem4  36516  dvasin  36560  geomcau  36615  bfp  36680  perfectALTVlem2  46376
  Copyright terms: Public domain W3C validator