MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posdif Structured version   Visualization version   GIF version

Theorem posdif 11607
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 11422 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
21ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 ltaddpos 11604 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
52, 3, 4syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
6 recn 11093 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
7 recn 11093 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 pncan3 11365 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
96, 7, 8syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵𝐴)) = 𝐵)
109breq2d 5103 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵𝐴)) ↔ 𝐴 < 𝐵))
115, 10bitr2d 280 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003   + caddc 11006   < clt 11143  cmin 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343  df-neg 11344
This theorem is referenced by:  posdifi  11664  posdifd  11701  nnsub  12166  nn0sub  12428  znnsub  12515  rpnnen1lem5  12876  difrp  12927  qbtwnre  13095  eluzgtdifelfzo  13624  subfzo0  13689  expnbnd  14136  expmulnbnd  14139  pfxccatin12lem3  14636  eflt  16023  cos01gt0  16097  ndvdsadd  16318  nn0seqcvgd  16478  prmgaplem7  16966  cshwshashlem2  17005  dvcvx  25950  abelthlem7  26373  sinq12gt0  26441  cosq14gt0  26444  cosne0  26463  tanregt0  26473  logdivlti  26554  logcnlem4  26579  scvxcvx  26921  perfectlem2  27166  rplogsumlem2  27421  dchrisum0flblem1  27444  crctcshwlkn0lem3  29788  crctcshwlkn0lem7  29792  mblfinlem3  37698  mblfinlem4  37699  dvasin  37743  geomcau  37798  bfp  37863  submodlt  47380  perfectALTVlem2  47752
  Copyright terms: Public domain W3C validator