![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posdif | Structured version Visualization version GIF version |
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.) |
Ref | Expression |
---|---|
posdif | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 11470 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
2 | 1 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
3 | simpl 484 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
4 | ltaddpos 11650 | . . 3 ⊢ (((𝐵 − 𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) | |
5 | 2, 3, 4 | syl2anc 585 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) |
6 | recn 11146 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
7 | recn 11146 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
8 | pncan3 11414 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | |
9 | 6, 7, 8 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
10 | 9 | breq2d 5118 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵 − 𝐴)) ↔ 𝐴 < 𝐵)) |
11 | 5, 10 | bitr2d 280 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℂcc 11054 ℝcr 11055 0cc0 11056 + caddc 11059 < clt 11194 − cmin 11390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-ltxr 11199 df-sub 11392 df-neg 11393 |
This theorem is referenced by: posdifi 11710 posdifd 11747 nnsub 12202 nn0sub 12468 znnsub 12554 rpnnen1lem5 12911 difrp 12958 qbtwnre 13124 eluzgtdifelfzo 13640 subfzo0 13700 expnbnd 14141 expmulnbnd 14144 pfxccatin12lem3 14626 eflt 16004 cos01gt0 16078 ndvdsadd 16297 nn0seqcvgd 16451 prmgaplem7 16934 cshwshashlem2 16974 dvcvx 25400 abelthlem7 25813 sinq12gt0 25880 cosq14gt0 25883 cosne0 25901 tanregt0 25911 logdivlti 25991 logcnlem4 26016 scvxcvx 26351 perfectlem2 26594 rplogsumlem2 26849 dchrisum0flblem1 26872 crctcshwlkn0lem3 28799 crctcshwlkn0lem7 28803 mblfinlem3 36163 mblfinlem4 36164 dvasin 36208 geomcau 36264 bfp 36329 perfectALTVlem2 46000 |
Copyright terms: Public domain | W3C validator |