MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posdif Structured version   Visualization version   GIF version

Theorem posdif 11477
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
posdif ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))

Proof of Theorem posdif
StepHypRef Expression
1 resubcl 11294 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
21ancoms 459 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 simpl 483 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 ltaddpos 11474 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
52, 3, 4syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) ↔ 𝐴 < (𝐴 + (𝐵𝐴))))
6 recn 10970 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
7 recn 10970 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
8 pncan3 11238 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
96, 7, 8syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵𝐴)) = 𝐵)
109breq2d 5087 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵𝐴)) ↔ 𝐴 < 𝐵))
115, 10bitr2d 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107   class class class wbr 5075  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880   + caddc 10883   < clt 11018  cmin 11214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-ltxr 11023  df-sub 11216  df-neg 11217
This theorem is referenced by:  posdifi  11534  posdifd  11571  nnsub  12026  nn0sub  12292  znnsub  12375  rpnnen1lem5  12730  difrp  12777  qbtwnre  12942  eluzgtdifelfzo  13458  subfzo0  13518  expnbnd  13956  expmulnbnd  13959  pfxccatin12lem3  14454  eflt  15835  cos01gt0  15909  ndvdsadd  16128  nn0seqcvgd  16284  prmgaplem7  16767  cshwshashlem2  16807  dvcvx  25193  abelthlem7  25606  sinq12gt0  25673  cosq14gt0  25676  cosne0  25694  tanregt0  25704  logdivlti  25784  logcnlem4  25809  scvxcvx  26144  perfectlem2  26387  rplogsumlem2  26642  dchrisum0flblem1  26665  crctcshwlkn0lem3  28186  crctcshwlkn0lem7  28190  mblfinlem3  35825  mblfinlem4  35826  dvasin  35870  geomcau  35926  bfp  35991  perfectALTVlem2  45185
  Copyright terms: Public domain W3C validator