| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posdif | Structured version Visualization version GIF version | ||
| Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.) |
| Ref | Expression |
|---|---|
| posdif | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl 11573 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
| 3 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 4 | ltaddpos 11753 | . . 3 ⊢ (((𝐵 − 𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) |
| 6 | recn 11245 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 7 | recn 11245 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 8 | pncan3 11516 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | |
| 9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 10 | 9 | breq2d 5155 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵 − 𝐴)) ↔ 𝐴 < 𝐵)) |
| 11 | 5, 10 | bitr2d 280 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 < clt 11295 − cmin 11492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-neg 11495 |
| This theorem is referenced by: posdifi 11813 posdifd 11850 nnsub 12310 nn0sub 12576 znnsub 12663 rpnnen1lem5 13023 difrp 13073 qbtwnre 13241 eluzgtdifelfzo 13766 subfzo0 13828 expnbnd 14271 expmulnbnd 14274 pfxccatin12lem3 14770 eflt 16153 cos01gt0 16227 ndvdsadd 16447 nn0seqcvgd 16607 prmgaplem7 17095 cshwshashlem2 17134 dvcvx 26059 abelthlem7 26482 sinq12gt0 26549 cosq14gt0 26552 cosne0 26571 tanregt0 26581 logdivlti 26662 logcnlem4 26687 scvxcvx 27029 perfectlem2 27274 rplogsumlem2 27529 dchrisum0flblem1 27552 crctcshwlkn0lem3 29832 crctcshwlkn0lem7 29836 mblfinlem3 37666 mblfinlem4 37667 dvasin 37711 geomcau 37766 bfp 37831 submodlt 47352 perfectALTVlem2 47709 |
| Copyright terms: Public domain | W3C validator |