| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posdif | Structured version Visualization version GIF version | ||
| Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.) |
| Ref | Expression |
|---|---|
| posdif | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl 11547 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
| 3 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 4 | ltaddpos 11727 | . . 3 ⊢ (((𝐵 − 𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵 − 𝐴) ↔ 𝐴 < (𝐴 + (𝐵 − 𝐴)))) |
| 6 | recn 11219 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 7 | recn 11219 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 8 | pncan3 11490 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | |
| 9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 10 | 9 | breq2d 5131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐴 + (𝐵 − 𝐴)) ↔ 𝐴 < 𝐵)) |
| 11 | 5, 10 | bitr2d 280 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 + caddc 11132 < clt 11269 − cmin 11466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: posdifi 11787 posdifd 11824 nnsub 12284 nn0sub 12551 znnsub 12638 rpnnen1lem5 12997 difrp 13047 qbtwnre 13215 eluzgtdifelfzo 13743 subfzo0 13805 expnbnd 14250 expmulnbnd 14253 pfxccatin12lem3 14750 eflt 16135 cos01gt0 16209 ndvdsadd 16429 nn0seqcvgd 16589 prmgaplem7 17077 cshwshashlem2 17116 dvcvx 25977 abelthlem7 26400 sinq12gt0 26468 cosq14gt0 26471 cosne0 26490 tanregt0 26500 logdivlti 26581 logcnlem4 26606 scvxcvx 26948 perfectlem2 27193 rplogsumlem2 27448 dchrisum0flblem1 27471 crctcshwlkn0lem3 29794 crctcshwlkn0lem7 29798 mblfinlem3 37683 mblfinlem4 37684 dvasin 37728 geomcau 37783 bfp 37848 submodlt 47379 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |