Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtp Structured version   Visualization version   GIF version

Theorem signsvtp 32926
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvt.b 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
Assertion
Ref Expression
signsvtp ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝑛,𝐴   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtp
StepHypRef Expression
1 signsvf.f . . . . 5 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
21fveq2d 6838 . . . 4 (𝜑 → (𝑉𝐹) = (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)))
3 signsvf.e . . . . 5 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
4 signsvf.0 . . . . 5 (𝜑 → (𝐸‘0) ≠ 0)
5 signsvf.a . . . . 5 (𝜑𝐴 ∈ ℝ)
6 signsv.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
7 signsv.w . . . . . 6 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
8 signsv.t . . . . . 6 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
9 signsv.v . . . . . 6 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
106, 7, 8, 9signsvfn 32925 . . . . 5 (((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
113, 4, 5, 10syl21anc 836 . . . 4 (𝜑 → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
122, 11eqtrd 2777 . . 3 (𝜑 → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
1312adantr 482 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
14 0red 11088 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 ∈ ℝ)
153adantr 482 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
1615eldifad 3917 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐸 ∈ Word ℝ)
176, 7, 8, 9signstf 32909 . . . . . . . 8 (𝐸 ∈ Word ℝ → (𝑇𝐸) ∈ Word ℝ)
18 wrdf 14331 . . . . . . . 8 ((𝑇𝐸) ∈ Word ℝ → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
1916, 17, 183syl 18 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
20 eldifsn 4742 . . . . . . . . . . 11 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
213, 20sylib 217 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
2221adantr 482 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
23 lennncl 14346 . . . . . . . . 9 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
24 fzo0end 13589 . . . . . . . . 9 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
2522, 23, 243syl 18 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
266, 7, 8, 9signstlen 32910 . . . . . . . . . 10 (𝐸 ∈ Word ℝ → (♯‘(𝑇𝐸)) = (♯‘𝐸))
2716, 26syl 17 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (♯‘(𝑇𝐸)) = (♯‘𝐸))
2827oveq2d 7362 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (0..^(♯‘(𝑇𝐸))) = (0..^(♯‘𝐸)))
2925, 28eleqtrrd 2841 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘(𝑇𝐸))))
3019, 29ffvelcdmd 7027 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑇𝐸)‘((♯‘𝐸) − 1)) ∈ ℝ)
315adantr 482 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3230, 31remulcld 11115 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) ∈ ℝ)
33 simpr 486 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
34 signsvt.b . . . . . . . . . . 11 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
35 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
3635oveq1i 7356 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
3736fveq2i 6837 . . . . . . . . . . 11 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘((♯‘𝐸) − 1))
3834, 37eqtri 2765 . . . . . . . . . 10 𝐵 = ((𝑇𝐸)‘((♯‘𝐸) − 1))
3938, 30eqeltrid 2842 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℝ)
4039recnd 11113 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
4131recnd 11113 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4240, 41mulcomd 11106 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
4333, 42breqtrrd 5128 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐵 · 𝐴))
4438oveq1i 7356 . . . . . 6 (𝐵 · 𝐴) = (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴)
4543, 44breqtrdi 5141 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴))
4614, 32, 45ltnsymd 11234 . . . 4 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ¬ (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0)
4746iffalsed 4492 . . 3 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 0)
4847oveq2d 7362 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉𝐸) + 0))
496, 7, 8, 9signsvvf 32922 . . . . . 6 𝑉:Word ℝ⟶ℕ0
5049a1i 11 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝑉:Word ℝ⟶ℕ0)
5150, 16ffvelcdmd 7027 . . . 4 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐸) ∈ ℕ0)
5251nn0cnd 12405 . . 3 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐸) ∈ ℂ)
5352addid1d 11285 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑉𝐸) + 0) = (𝑉𝐸))
5413, 48, 533eqtrd 2781 1 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wne 2941  cdif 3902  c0 4277  ifcif 4481  {csn 4581  {cpr 4583  {ctp 4585  cop 4587   class class class wbr 5100  cmpt 5183  wf 6484  cfv 6488  (class class class)co 7346  cmpo 7348  cr 10980  0cc0 10981  1c1 10982   + caddc 10984   · cmul 10986   < clt 11119  cmin 11315  -cneg 11316  cn 12083  0cn0 12343  ...cfz 13349  ..^cfzo 13492  chash 14154  Word cword 14326   ++ cconcat 14382  ⟨“cs1 14407  sgncsgn 14901  Σcsu 15501  ndxcnx 16996  Basecbs 17014  +gcplusg 17064   Σg cgsu 17253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-supp 8057  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-sup 9308  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-xnn0 12416  df-z 12430  df-uz 12693  df-rp 12841  df-fz 13350  df-fzo 13493  df-seq 13832  df-exp 13893  df-hash 14155  df-word 14327  df-lsw 14375  df-concat 14383  df-s1 14408  df-substr 14457  df-pfx 14487  df-sgn 14902  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-sum 15502  df-struct 16950  df-slot 16985  df-ndx 16997  df-base 17015  df-plusg 17077  df-0g 17254  df-gsum 17255  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-mulg 18802  df-cntz 19024
This theorem is referenced by:  signsvfpn  32928
  Copyright terms: Public domain W3C validator