Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtp Structured version   Visualization version   GIF version

Theorem signsvtp 32562
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvt.b 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
Assertion
Ref Expression
signsvtp ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝑛,𝐴   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtp
StepHypRef Expression
1 signsvf.f . . . . 5 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
21fveq2d 6778 . . . 4 (𝜑 → (𝑉𝐹) = (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)))
3 signsvf.e . . . . 5 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
4 signsvf.0 . . . . 5 (𝜑 → (𝐸‘0) ≠ 0)
5 signsvf.a . . . . 5 (𝜑𝐴 ∈ ℝ)
6 signsv.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
7 signsv.w . . . . . 6 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
8 signsv.t . . . . . 6 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
9 signsv.v . . . . . 6 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
106, 7, 8, 9signsvfn 32561 . . . . 5 (((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
113, 4, 5, 10syl21anc 835 . . . 4 (𝜑 → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
122, 11eqtrd 2778 . . 3 (𝜑 → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
1312adantr 481 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
14 0red 10978 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 ∈ ℝ)
153adantr 481 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
1615eldifad 3899 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐸 ∈ Word ℝ)
176, 7, 8, 9signstf 32545 . . . . . . . 8 (𝐸 ∈ Word ℝ → (𝑇𝐸) ∈ Word ℝ)
18 wrdf 14222 . . . . . . . 8 ((𝑇𝐸) ∈ Word ℝ → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
1916, 17, 183syl 18 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
20 eldifsn 4720 . . . . . . . . . . 11 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
213, 20sylib 217 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
2221adantr 481 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
23 lennncl 14237 . . . . . . . . 9 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
24 fzo0end 13479 . . . . . . . . 9 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
2522, 23, 243syl 18 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
266, 7, 8, 9signstlen 32546 . . . . . . . . . 10 (𝐸 ∈ Word ℝ → (♯‘(𝑇𝐸)) = (♯‘𝐸))
2716, 26syl 17 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (♯‘(𝑇𝐸)) = (♯‘𝐸))
2827oveq2d 7291 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (0..^(♯‘(𝑇𝐸))) = (0..^(♯‘𝐸)))
2925, 28eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘(𝑇𝐸))))
3019, 29ffvelrnd 6962 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑇𝐸)‘((♯‘𝐸) − 1)) ∈ ℝ)
315adantr 481 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3230, 31remulcld 11005 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) ∈ ℝ)
33 simpr 485 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
34 signsvt.b . . . . . . . . . . 11 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
35 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
3635oveq1i 7285 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
3736fveq2i 6777 . . . . . . . . . . 11 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘((♯‘𝐸) − 1))
3834, 37eqtri 2766 . . . . . . . . . 10 𝐵 = ((𝑇𝐸)‘((♯‘𝐸) − 1))
3938, 30eqeltrid 2843 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℝ)
4039recnd 11003 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
4131recnd 11003 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4240, 41mulcomd 10996 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
4333, 42breqtrrd 5102 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐵 · 𝐴))
4438oveq1i 7285 . . . . . 6 (𝐵 · 𝐴) = (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴)
4543, 44breqtrdi 5115 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴))
4614, 32, 45ltnsymd 11124 . . . 4 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ¬ (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0)
4746iffalsed 4470 . . 3 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 0)
4847oveq2d 7291 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉𝐸) + 0))
496, 7, 8, 9signsvvf 32558 . . . . . 6 𝑉:Word ℝ⟶ℕ0
5049a1i 11 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝑉:Word ℝ⟶ℕ0)
5150, 16ffvelrnd 6962 . . . 4 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐸) ∈ ℕ0)
5251nn0cnd 12295 . . 3 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐸) ∈ ℂ)
5352addid1d 11175 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑉𝐸) + 0) = (𝑉𝐸))
5413, 48, 533eqtrd 2782 1 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  c0 4256  ifcif 4459  {csn 4561  {cpr 4563  {ctp 4565  cop 4567   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  sgncsgn 14797  Σcsu 15397  ndxcnx 16894  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-sgn 14798  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mulg 18701  df-cntz 18923
This theorem is referenced by:  signsvfpn  32564
  Copyright terms: Public domain W3C validator