Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtp Structured version   Visualization version   GIF version

Theorem signsvtp 34617
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvt.b 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
Assertion
Ref Expression
signsvtp ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝑛,𝐴   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtp
StepHypRef Expression
1 signsvf.f . . . . 5 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
21fveq2d 6832 . . . 4 (𝜑 → (𝑉𝐹) = (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)))
3 signsvf.e . . . . 5 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
4 signsvf.0 . . . . 5 (𝜑 → (𝐸‘0) ≠ 0)
5 signsvf.a . . . . 5 (𝜑𝐴 ∈ ℝ)
6 signsv.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
7 signsv.w . . . . . 6 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
8 signsv.t . . . . . 6 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
9 signsv.v . . . . . 6 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
106, 7, 8, 9signsvfn 34616 . . . . 5 (((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
113, 4, 5, 10syl21anc 837 . . . 4 (𝜑 → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
122, 11eqtrd 2768 . . 3 (𝜑 → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
1312adantr 480 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
14 0red 11122 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 ∈ ℝ)
153adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
1615eldifad 3910 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐸 ∈ Word ℝ)
176, 7, 8, 9signstf 34600 . . . . . . . 8 (𝐸 ∈ Word ℝ → (𝑇𝐸) ∈ Word ℝ)
18 wrdf 14427 . . . . . . . 8 ((𝑇𝐸) ∈ Word ℝ → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
1916, 17, 183syl 18 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
20 eldifsn 4737 . . . . . . . . . . 11 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
213, 20sylib 218 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
2221adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
23 lennncl 14443 . . . . . . . . 9 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
24 fzo0end 13660 . . . . . . . . 9 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
2522, 23, 243syl 18 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
266, 7, 8, 9signstlen 34601 . . . . . . . . . 10 (𝐸 ∈ Word ℝ → (♯‘(𝑇𝐸)) = (♯‘𝐸))
2716, 26syl 17 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (♯‘(𝑇𝐸)) = (♯‘𝐸))
2827oveq2d 7368 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (0..^(♯‘(𝑇𝐸))) = (0..^(♯‘𝐸)))
2925, 28eleqtrrd 2836 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘(𝑇𝐸))))
3019, 29ffvelcdmd 7024 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑇𝐸)‘((♯‘𝐸) − 1)) ∈ ℝ)
315adantr 480 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3230, 31remulcld 11149 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
34 signsvt.b . . . . . . . . . . 11 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
35 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
3635oveq1i 7362 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
3736fveq2i 6831 . . . . . . . . . . 11 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘((♯‘𝐸) − 1))
3834, 37eqtri 2756 . . . . . . . . . 10 𝐵 = ((𝑇𝐸)‘((♯‘𝐸) − 1))
3938, 30eqeltrid 2837 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℝ)
4039recnd 11147 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
4131recnd 11147 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4240, 41mulcomd 11140 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
4333, 42breqtrrd 5121 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐵 · 𝐴))
4438oveq1i 7362 . . . . . 6 (𝐵 · 𝐴) = (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴)
4543, 44breqtrdi 5134 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 0 < (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴))
4614, 32, 45ltnsymd 11269 . . . 4 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ¬ (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0)
4746iffalsed 4485 . . 3 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 0)
4847oveq2d 7368 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉𝐸) + 0))
496, 7, 8, 9signsvvf 34613 . . . . . 6 𝑉:Word ℝ⟶ℕ0
5049a1i 11 . . . . 5 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → 𝑉:Word ℝ⟶ℕ0)
5150, 16ffvelcdmd 7024 . . . 4 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐸) ∈ ℕ0)
5251nn0cnd 12451 . . 3 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐸) ∈ ℂ)
5352addridd 11320 . 2 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → ((𝑉𝐸) + 0) = (𝑉𝐸))
5413, 48, 533eqtrd 2772 1 ((𝜑 ∧ 0 < (𝐴 · 𝐵)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  c0 4282  ifcif 4474  {csn 4575  {cpr 4577  {ctp 4579  cop 4581   class class class wbr 5093  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cmin 11351  -cneg 11352  cn 12132  0cn0 12388  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   ++ cconcat 14479  ⟨“cs1 14505  sgncsgn 14995  Σcsu 15595  ndxcnx 17106  Basecbs 17122  +gcplusg 17163   Σg cgsu 17346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-sgn 14996  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mulg 18983  df-cntz 19231
This theorem is referenced by:  signsvfpn  34619
  Copyright terms: Public domain W3C validator