Step | Hyp | Ref
| Expression |
1 | | signsvf.f |
. . . . 5
β’ (π β πΉ = (πΈ ++ β¨βπ΄ββ©)) |
2 | 1 | fveq2d 6892 |
. . . 4
β’ (π β (πβπΉ) = (πβ(πΈ ++ β¨βπ΄ββ©))) |
3 | | signsvf.e |
. . . . 5
β’ (π β πΈ β (Word β β
{β
})) |
4 | | signsvf.0 |
. . . . 5
β’ (π β (πΈβ0) β 0) |
5 | | signsvf.a |
. . . . 5
β’ (π β π΄ β β) |
6 | | signsv.p |
. . . . . 6
⒠⨣ =
(π β {-1, 0, 1}, π β {-1, 0, 1} β¦
if(π = 0, π, π)) |
7 | | signsv.w |
. . . . . 6
β’ π = {β¨(Baseβndx), {-1,
0, 1}β©, β¨(+gβndx), ⨣
β©} |
8 | | signsv.t |
. . . . . 6
β’ π = (π β Word β β¦ (π β
(0..^(β―βπ))
β¦ (π
Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
9 | | signsv.v |
. . . . . 6
β’ π = (π β Word β β¦ Ξ£π β
(1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
10 | 6, 7, 8, 9 | signsvfn 33581 |
. . . . 5
β’ (((πΈ β (Word β β
{β
}) β§ (πΈβ0) β 0) β§ π΄ β β) β (πβ(πΈ ++ β¨βπ΄ββ©)) = ((πβπΈ) + if((((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0, 1, 0))) |
11 | 3, 4, 5, 10 | syl21anc 836 |
. . . 4
β’ (π β (πβ(πΈ ++ β¨βπ΄ββ©)) = ((πβπΈ) + if((((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0, 1, 0))) |
12 | 2, 11 | eqtrd 2772 |
. . 3
β’ (π β (πβπΉ) = ((πβπΈ) + if((((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0, 1, 0))) |
13 | 12 | adantr 481 |
. 2
β’ ((π β§ 0 < (π΄ Β· π΅)) β (πβπΉ) = ((πβπΈ) + if((((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0, 1, 0))) |
14 | | 0red 11213 |
. . . . 5
β’ ((π β§ 0 < (π΄ Β· π΅)) β 0 β β) |
15 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ 0 < (π΄ Β· π΅)) β πΈ β (Word β β
{β
})) |
16 | 15 | eldifad 3959 |
. . . . . . . 8
β’ ((π β§ 0 < (π΄ Β· π΅)) β πΈ β Word β) |
17 | 6, 7, 8, 9 | signstf 33565 |
. . . . . . . 8
β’ (πΈ β Word β β
(πβπΈ) β Word β) |
18 | | wrdf 14465 |
. . . . . . . 8
β’ ((πβπΈ) β Word β β (πβπΈ):(0..^(β―β(πβπΈ)))βΆβ) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . . 7
β’ ((π β§ 0 < (π΄ Β· π΅)) β (πβπΈ):(0..^(β―β(πβπΈ)))βΆβ) |
20 | | eldifsn 4789 |
. . . . . . . . . . 11
β’ (πΈ β (Word β β
{β
}) β (πΈ β
Word β β§ πΈ β
β
)) |
21 | 3, 20 | sylib 217 |
. . . . . . . . . 10
β’ (π β (πΈ β Word β β§ πΈ β β
)) |
22 | 21 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ 0 < (π΄ Β· π΅)) β (πΈ β Word β β§ πΈ β β
)) |
23 | | lennncl 14480 |
. . . . . . . . 9
β’ ((πΈ β Word β β§ πΈ β β
) β
(β―βπΈ) β
β) |
24 | | fzo0end 13720 |
. . . . . . . . 9
β’
((β―βπΈ)
β β β ((β―βπΈ) β 1) β
(0..^(β―βπΈ))) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . 8
β’ ((π β§ 0 < (π΄ Β· π΅)) β ((β―βπΈ) β 1) β
(0..^(β―βπΈ))) |
26 | 6, 7, 8, 9 | signstlen 33566 |
. . . . . . . . . 10
β’ (πΈ β Word β β
(β―β(πβπΈ)) = (β―βπΈ)) |
27 | 16, 26 | syl 17 |
. . . . . . . . 9
β’ ((π β§ 0 < (π΄ Β· π΅)) β (β―β(πβπΈ)) = (β―βπΈ)) |
28 | 27 | oveq2d 7421 |
. . . . . . . 8
β’ ((π β§ 0 < (π΄ Β· π΅)) β (0..^(β―β(πβπΈ))) = (0..^(β―βπΈ))) |
29 | 25, 28 | eleqtrrd 2836 |
. . . . . . 7
β’ ((π β§ 0 < (π΄ Β· π΅)) β ((β―βπΈ) β 1) β
(0..^(β―β(πβπΈ)))) |
30 | 19, 29 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π β§ 0 < (π΄ Β· π΅)) β ((πβπΈ)β((β―βπΈ) β 1)) β
β) |
31 | 5 | adantr 481 |
. . . . . 6
β’ ((π β§ 0 < (π΄ Β· π΅)) β π΄ β β) |
32 | 30, 31 | remulcld 11240 |
. . . . 5
β’ ((π β§ 0 < (π΄ Β· π΅)) β (((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) β β) |
33 | | simpr 485 |
. . . . . . 7
β’ ((π β§ 0 < (π΄ Β· π΅)) β 0 < (π΄ Β· π΅)) |
34 | | signsvt.b |
. . . . . . . . . . 11
β’ π΅ = ((πβπΈ)β(π β 1)) |
35 | | signsvf.n |
. . . . . . . . . . . . 13
β’ π = (β―βπΈ) |
36 | 35 | oveq1i 7415 |
. . . . . . . . . . . 12
β’ (π β 1) =
((β―βπΈ) β
1) |
37 | 36 | fveq2i 6891 |
. . . . . . . . . . 11
β’ ((πβπΈ)β(π β 1)) = ((πβπΈ)β((β―βπΈ) β 1)) |
38 | 34, 37 | eqtri 2760 |
. . . . . . . . . 10
β’ π΅ = ((πβπΈ)β((β―βπΈ) β 1)) |
39 | 38, 30 | eqeltrid 2837 |
. . . . . . . . 9
β’ ((π β§ 0 < (π΄ Β· π΅)) β π΅ β β) |
40 | 39 | recnd 11238 |
. . . . . . . 8
β’ ((π β§ 0 < (π΄ Β· π΅)) β π΅ β β) |
41 | 31 | recnd 11238 |
. . . . . . . 8
β’ ((π β§ 0 < (π΄ Β· π΅)) β π΄ β β) |
42 | 40, 41 | mulcomd 11231 |
. . . . . . 7
β’ ((π β§ 0 < (π΄ Β· π΅)) β (π΅ Β· π΄) = (π΄ Β· π΅)) |
43 | 33, 42 | breqtrrd 5175 |
. . . . . 6
β’ ((π β§ 0 < (π΄ Β· π΅)) β 0 < (π΅ Β· π΄)) |
44 | 38 | oveq1i 7415 |
. . . . . 6
β’ (π΅ Β· π΄) = (((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) |
45 | 43, 44 | breqtrdi 5188 |
. . . . 5
β’ ((π β§ 0 < (π΄ Β· π΅)) β 0 < (((πβπΈ)β((β―βπΈ) β 1)) Β· π΄)) |
46 | 14, 32, 45 | ltnsymd 11359 |
. . . 4
β’ ((π β§ 0 < (π΄ Β· π΅)) β Β¬ (((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0) |
47 | 46 | iffalsed 4538 |
. . 3
β’ ((π β§ 0 < (π΄ Β· π΅)) β if((((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0, 1, 0) = 0) |
48 | 47 | oveq2d 7421 |
. 2
β’ ((π β§ 0 < (π΄ Β· π΅)) β ((πβπΈ) + if((((πβπΈ)β((β―βπΈ) β 1)) Β· π΄) < 0, 1, 0)) = ((πβπΈ) + 0)) |
49 | 6, 7, 8, 9 | signsvvf 33578 |
. . . . . 6
β’ π:Word
ββΆβ0 |
50 | 49 | a1i 11 |
. . . . 5
β’ ((π β§ 0 < (π΄ Β· π΅)) β π:Word
ββΆβ0) |
51 | 50, 16 | ffvelcdmd 7084 |
. . . 4
β’ ((π β§ 0 < (π΄ Β· π΅)) β (πβπΈ) β
β0) |
52 | 51 | nn0cnd 12530 |
. . 3
β’ ((π β§ 0 < (π΄ Β· π΅)) β (πβπΈ) β β) |
53 | 52 | addridd 11410 |
. 2
β’ ((π β§ 0 < (π΄ Β· π΅)) β ((πβπΈ) + 0) = (πβπΈ)) |
54 | 13, 48, 53 | 3eqtrd 2776 |
1
β’ ((π β§ 0 < (π΄ Β· π΅)) β (πβπΉ) = (πβπΈ)) |