MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifd Structured version   Visualization version   GIF version

Theorem fvmptnn04ifd 21617
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifd ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐷)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifd
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1134 . 2 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1134 . 2 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1139 . 2 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → 𝑁 / 𝑛𝐷𝑉)
7 0red 10735 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
82nnred 11744 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
92nngt0d 11778 . . . . . . . . 9 (𝜑 → 0 < 𝑆)
107, 8, 9ltnsymd 10880 . . . . . . . 8 (𝜑 → ¬ 𝑆 < 0)
1110adantr 484 . . . . . . 7 ((𝜑𝑁 = 0) → ¬ 𝑆 < 0)
12 breq2 5044 . . . . . . . . 9 (𝑁 = 0 → (𝑆 < 𝑁𝑆 < 0))
1312notbid 321 . . . . . . . 8 (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
1413adantl 485 . . . . . . 7 ((𝜑𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0))
1511, 14mpbird 260 . . . . . 6 ((𝜑𝑁 = 0) → ¬ 𝑆 < 𝑁)
1615pm2.21d 121 . . . . 5 ((𝜑𝑁 = 0) → (𝑆 < 𝑁𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐴))
1716impancom 455 . . . 4 ((𝜑𝑆 < 𝑁) → (𝑁 = 0 → 𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐴))
18173adant3 1133 . . 3 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (𝑁 = 0 → 𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐴))
1918imp 410 . 2 (((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐴)
204nn0red 12050 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
21 ltnsym 10829 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆))
228, 20, 21syl2anc 587 . . . . . . 7 (𝜑 → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆))
2322imp 410 . . . . . 6 ((𝜑𝑆 < 𝑁) → ¬ 𝑁 < 𝑆)
24233adant3 1133 . . . . 5 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → ¬ 𝑁 < 𝑆)
2524pm2.21d 121 . . . 4 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (𝑁 < 𝑆𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐵))
2625a1d 25 . . 3 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (0 < 𝑁 → (𝑁 < 𝑆𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐵)))
27263imp 1112 . 2 (((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐵)
2820, 8lttri3d 10871 . . . . . . 7 (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁)))
2928simplbda 503 . . . . . 6 ((𝜑𝑁 = 𝑆) → ¬ 𝑆 < 𝑁)
3029pm2.21d 121 . . . . 5 ((𝜑𝑁 = 𝑆) → (𝑆 < 𝑁𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐶))
3130impancom 455 . . . 4 ((𝜑𝑆 < 𝑁) → (𝑁 = 𝑆𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐶))
32313adant3 1133 . . 3 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐶))
3332imp 410 . 2 (((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐶)
34 eqidd 2740 . 2 (((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑁 / 𝑛𝐷)
351, 3, 5, 6, 19, 27, 33, 34fvmptnn04if 21613 1 ((𝜑𝑆 < 𝑁𝑁 / 𝑛𝐷𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  csb 3800  ifcif 4424   class class class wbr 5040  cmpt 5120  cfv 6350  cr 10627  0cc0 10628   < clt 10766  cn 11729  0cn0 11989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-er 8333  df-en 8569  df-dom 8570  df-sdom 8571  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-n0 11990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator