Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifd | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifd | ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) | |
7 | 0red 10978 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 2 | nnred 11988 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
9 | 2 | nngt0d 12022 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 𝑆) |
10 | 7, 8, 9 | ltnsymd 11124 | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝑆 < 0) |
11 | 10 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
12 | breq2 5078 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
13 | 12 | notbid 318 | . . . . . . . 8 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
14 | 13 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
15 | 11, 14 | mpbird 256 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
16 | 15 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
17 | 16 | impancom 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 17 | 3adant3 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 407 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | 4 | nn0red 12294 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
21 | ltnsym 11073 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) | |
22 | 8, 20, 21 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) |
23 | 22 | imp 407 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → ¬ 𝑁 < 𝑆) |
24 | 23 | 3adant3 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ¬ 𝑁 < 𝑆) |
25 | 24 | pm2.21d 121 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵)) |
26 | 25 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵))) |
27 | 26 | 3imp 1110 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵) |
28 | 20, 8 | lttri3d 11115 | . . . . . . 7 ⊢ (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁))) |
29 | 28 | simplbda 500 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 < 𝑁) |
30 | 29 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
31 | 30 | impancom 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
32 | 31 | 3adant3 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
33 | 32 | imp 407 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶) |
34 | eqidd 2739 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐷) | |
35 | 1, 3, 5, 6, 19, 27, 33, 34 | fvmptnn04if 21998 | 1 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⦋csb 3832 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 ℝcr 10870 0cc0 10871 < clt 11009 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |