Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifd | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifd | ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1134 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1134 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1139 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) | |
7 | 0red 10735 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 2 | nnred 11744 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
9 | 2 | nngt0d 11778 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 𝑆) |
10 | 7, 8, 9 | ltnsymd 10880 | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝑆 < 0) |
11 | 10 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
12 | breq2 5044 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
13 | 12 | notbid 321 | . . . . . . . 8 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
14 | 13 | adantl 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
15 | 11, 14 | mpbird 260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
16 | 15 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
17 | 16 | impancom 455 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 17 | 3adant3 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 410 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | 4 | nn0red 12050 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
21 | ltnsym 10829 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) | |
22 | 8, 20, 21 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) |
23 | 22 | imp 410 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → ¬ 𝑁 < 𝑆) |
24 | 23 | 3adant3 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ¬ 𝑁 < 𝑆) |
25 | 24 | pm2.21d 121 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵)) |
26 | 25 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵))) |
27 | 26 | 3imp 1112 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵) |
28 | 20, 8 | lttri3d 10871 | . . . . . . 7 ⊢ (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁))) |
29 | 28 | simplbda 503 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 < 𝑁) |
30 | 29 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
31 | 30 | impancom 455 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
32 | 31 | 3adant3 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
33 | 32 | imp 410 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶) |
34 | eqidd 2740 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐷) | |
35 | 1, 3, 5, 6, 19, 27, 33, 34 | fvmptnn04if 21613 | 1 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ⦋csb 3800 ifcif 4424 class class class wbr 5040 ↦ cmpt 5120 ‘cfv 6350 ℝcr 10627 0cc0 10628 < clt 10766 ℕcn 11729 ℕ0cn0 11989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-nn 11730 df-n0 11990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |