![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifd | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifd | ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1127 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1127 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1132 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) | |
7 | 0red 10244 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 2 | nnred 11238 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
9 | 2 | nngt0d 11267 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 𝑆) |
10 | 7, 8, 9 | ltnsymd 10389 | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝑆 < 0) |
11 | 10 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
12 | breq2 4791 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
13 | 12 | notbid 307 | . . . . . . . 8 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
14 | 13 | adantl 467 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
15 | 11, 14 | mpbird 247 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
16 | 15 | pm2.21d 119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
17 | 16 | impancom 439 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 17 | 3adant3 1126 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 393 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | 4 | nn0red 11555 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
21 | ltnsym 10338 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) | |
22 | 8, 20, 21 | syl2anc 567 | . . . . . . 7 ⊢ (𝜑 → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) |
23 | 22 | imp 393 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → ¬ 𝑁 < 𝑆) |
24 | 23 | 3adant3 1126 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ¬ 𝑁 < 𝑆) |
25 | 24 | pm2.21d 119 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵)) |
26 | 25 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵))) |
27 | 26 | 3imp 1101 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵) |
28 | 20, 8 | lttri3d 10380 | . . . . . . 7 ⊢ (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁))) |
29 | 28 | simplbda 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 < 𝑁) |
30 | 29 | pm2.21d 119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
31 | 30 | impancom 439 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
32 | 31 | 3adant3 1126 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
33 | 32 | imp 393 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶) |
34 | eqidd 2772 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐷) | |
35 | 1, 3, 5, 6, 19, 27, 33, 34 | fvmptnn04if 20875 | 1 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ⦋csb 3683 ifcif 4226 class class class wbr 4787 ↦ cmpt 4864 ‘cfv 6032 ℝcr 10138 0cc0 10139 < clt 10277 ℕcn 11223 ℕ0cn0 11495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-er 7897 df-en 8111 df-dom 8112 df-sdom 8113 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-nn 11224 df-n0 11496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |