Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifd | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifd | ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1131 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1136 | . 2 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) | |
7 | 0red 10909 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 2 | nnred 11918 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
9 | 2 | nngt0d 11952 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 𝑆) |
10 | 7, 8, 9 | ltnsymd 11054 | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝑆 < 0) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 0) |
12 | breq2 5074 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑆 < 𝑁 ↔ 𝑆 < 0)) | |
13 | 12 | notbid 317 | . . . . . . . 8 ⊢ (𝑁 = 0 → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 = 0) → (¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0)) |
15 | 11, 14 | mpbird 256 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → ¬ 𝑆 < 𝑁) |
16 | 15 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
17 | 16 | impancom 451 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 17 | 3adant3 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | 4 | nn0red 12224 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
21 | ltnsym 11003 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) | |
22 | 8, 20, 21 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑆 < 𝑁 → ¬ 𝑁 < 𝑆)) |
23 | 22 | imp 406 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → ¬ 𝑁 < 𝑆) |
24 | 23 | 3adant3 1130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → ¬ 𝑁 < 𝑆) |
25 | 24 | pm2.21d 121 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵)) |
26 | 25 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (0 < 𝑁 → (𝑁 < 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵))) |
27 | 26 | 3imp 1109 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐵) |
28 | 20, 8 | lttri3d 11045 | . . . . . . 7 ⊢ (𝜑 → (𝑁 = 𝑆 ↔ (¬ 𝑁 < 𝑆 ∧ ¬ 𝑆 < 𝑁))) |
29 | 28 | simplbda 499 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → ¬ 𝑆 < 𝑁) |
30 | 29 | pm2.21d 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
31 | 30 | impancom 451 | . . . 4 ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
32 | 31 | 3adant3 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶)) |
33 | 32 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐶) |
34 | eqidd 2739 | . 2 ⊢ (((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐷 = ⦋𝑁 / 𝑛⦌𝐷) | |
35 | 1, 3, 5, 6, 19, 27, 33, 34 | fvmptnn04if 21906 | 1 ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⦋csb 3828 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 ℝcr 10801 0cc0 10802 < clt 10940 ℕcn 11903 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |