MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem1 Structured version   Visualization version   GIF version

Theorem ostth2lem1 26671
Description: Lemma for ostth2 26690, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 26690. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛𝑜(𝐴𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ostth2lem1.1 (𝜑𝐴 ∈ ℝ)
ostth2lem1.2 (𝜑𝐵 ∈ ℝ)
ostth2lem1.3 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
Assertion
Ref Expression
ostth2lem1 (𝜑𝐴 ≤ 1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem ostth2lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2re 11977 . . . . . 6 2 ∈ ℝ
2 ostth2lem1.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
4 remulcl 10887 . . . . . 6 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
51, 3, 4sylancr 586 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (2 · 𝐵) ∈ ℝ)
6 simpr 484 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
7 1re 10906 . . . . . . 7 1 ∈ ℝ
8 ostth2lem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
10 difrp 12697 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
117, 9, 10sylancr 586 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
126, 11mpbid 231 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ+)
135, 12rerpdivcld 12732 . . . 4 ((𝜑 ∧ 1 < 𝐴) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
14 expnbnd 13875 . . . 4 ((((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
1513, 9, 6, 14syl3anc 1369 . . 3 ((𝜑 ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
16 nnnn0 12170 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
17 reexpcl 13727 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
189, 16, 17syl2an 595 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
1913adantr 480 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
2012rpred 12701 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ)
2120adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
22 nnre 11910 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2421, 23remulcld 10936 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) ∈ ℝ)
2524, 18remulcld 10936 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) ∈ ℝ)
268ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
27 2nn 11976 . . . . . . . . . . . 12 2 ∈ ℕ
28 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
29 nnmulcl 11927 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3027, 28, 29sylancr 586 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3130nnnn0d 12223 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
3226, 31reexpcld 13809 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ∈ ℝ)
3330nnred 11918 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
342ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
3533, 34remulcld 10936 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · 𝐵) ∈ ℝ)
36 0red 10909 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
377a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
38 0lt1 11427 . . . . . . . . . . . . . . 15 0 < 1
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
4036, 37, 9, 39, 6lttrd 11066 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
419, 40elrpd 12698 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
42 nnz 12272 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
43 rpexpcl 13729 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
4441, 42, 43syl2an 595 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ+)
45 peano2re 11078 . . . . . . . . . . . . 13 (((𝐴 − 1) · 𝑘) ∈ ℝ → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4624, 45syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4724ltp1d 11835 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (((𝐴 − 1) · 𝑘) + 1))
4816adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
4941adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ+)
5049rpge0d 12705 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
51 bernneq2 13873 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5226, 48, 50, 51syl3anc 1369 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5324, 46, 18, 47, 52ltletrd 11065 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (𝐴𝑘))
5424, 18, 44, 53ltmul1dd 12756 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((𝐴𝑘) · (𝐴𝑘)))
5523recnd 10934 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56552timesd 12146 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
5756oveq2d 7271 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = (𝐴↑(𝑘 + 𝑘)))
5826recnd 10934 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
5958, 48, 48expaddd 13794 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6057, 59eqtrd 2778 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6154, 60breqtrrd 5098 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < (𝐴↑(2 · 𝑘)))
62 oveq2 7263 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → (𝐴𝑛) = (𝐴↑(2 · 𝑘)))
63 oveq1 7262 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → (𝑛 · 𝐵) = ((2 · 𝑘) · 𝐵))
6462, 63breq12d 5083 . . . . . . . . . 10 (𝑛 = (2 · 𝑘) → ((𝐴𝑛) ≤ (𝑛 · 𝐵) ↔ (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
65 ostth2lem1.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
6665ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6766ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6864, 67, 30rspcdva 3554 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵))
6925, 32, 35, 61, 68ltletrd 11065 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((2 · 𝑘) · 𝐵))
7021recnd 10934 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℂ)
7118recnd 10934 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
7270, 71, 55mul32d 11115 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) = (((𝐴 − 1) · 𝑘) · (𝐴𝑘)))
73 2cnd 11981 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
7434recnd 10934 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
7573, 74, 55mul32d 11115 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) · 𝑘) = ((2 · 𝑘) · 𝐵))
7669, 72, 753brtr4d 5102 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘))
7721, 18remulcld 10936 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ)
785adantr 480 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝐵) ∈ ℝ)
79 nngt0 11934 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
8079adantl 481 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
81 ltmul1 11755 . . . . . . . 8 ((((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8277, 78, 23, 80, 81syl112anc 1372 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8376, 82mpbird 256 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵))
8412rpgt0d 12704 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 0 < (𝐴 − 1))
8584adantr 480 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < (𝐴 − 1))
86 ltmuldiv2 11779 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ ((𝐴 − 1) ∈ ℝ ∧ 0 < (𝐴 − 1))) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8718, 78, 21, 85, 86syl112anc 1372 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8883, 87mpbid 231 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1)))
8918, 19, 88ltnsymd 11054 . . . 4 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ¬ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9089nrexdv 3197 . . 3 ((𝜑 ∧ 1 < 𝐴) → ¬ ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9115, 90pm2.65da 813 . 2 (𝜑 → ¬ 1 < 𝐴)
92 lenlt 10984 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
938, 7, 92sylancl 585 . 2 (𝜑 → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
9491, 93mpbird 256 1 (𝜑𝐴 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711
This theorem is referenced by:  ostth2lem4  26689
  Copyright terms: Public domain W3C validator