MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem1 Structured version   Visualization version   GIF version

Theorem ostth2lem1 26499
Description: Lemma for ostth2 26518, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 26518. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛𝑜(𝐴𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ostth2lem1.1 (𝜑𝐴 ∈ ℝ)
ostth2lem1.2 (𝜑𝐵 ∈ ℝ)
ostth2lem1.3 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
Assertion
Ref Expression
ostth2lem1 (𝜑𝐴 ≤ 1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem ostth2lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2re 11904 . . . . . 6 2 ∈ ℝ
2 ostth2lem1.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
32adantr 484 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
4 remulcl 10814 . . . . . 6 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
51, 3, 4sylancr 590 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (2 · 𝐵) ∈ ℝ)
6 simpr 488 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
7 1re 10833 . . . . . . 7 1 ∈ ℝ
8 ostth2lem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
98adantr 484 . . . . . . 7 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
10 difrp 12624 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
117, 9, 10sylancr 590 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
126, 11mpbid 235 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ+)
135, 12rerpdivcld 12659 . . . 4 ((𝜑 ∧ 1 < 𝐴) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
14 expnbnd 13799 . . . 4 ((((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
1513, 9, 6, 14syl3anc 1373 . . 3 ((𝜑 ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
16 nnnn0 12097 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
17 reexpcl 13652 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
189, 16, 17syl2an 599 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
1913adantr 484 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
2012rpred 12628 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ)
2120adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
22 nnre 11837 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2421, 23remulcld 10863 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) ∈ ℝ)
2524, 18remulcld 10863 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) ∈ ℝ)
268ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
27 2nn 11903 . . . . . . . . . . . 12 2 ∈ ℕ
28 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
29 nnmulcl 11854 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3027, 28, 29sylancr 590 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3130nnnn0d 12150 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
3226, 31reexpcld 13733 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ∈ ℝ)
3330nnred 11845 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
342ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
3533, 34remulcld 10863 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · 𝐵) ∈ ℝ)
36 0red 10836 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
377a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
38 0lt1 11354 . . . . . . . . . . . . . . 15 0 < 1
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
4036, 37, 9, 39, 6lttrd 10993 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
419, 40elrpd 12625 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
42 nnz 12199 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
43 rpexpcl 13654 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
4441, 42, 43syl2an 599 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ+)
45 peano2re 11005 . . . . . . . . . . . . 13 (((𝐴 − 1) · 𝑘) ∈ ℝ → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4624, 45syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4724ltp1d 11762 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (((𝐴 − 1) · 𝑘) + 1))
4816adantl 485 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
4941adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ+)
5049rpge0d 12632 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
51 bernneq2 13797 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5226, 48, 50, 51syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5324, 46, 18, 47, 52ltletrd 10992 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (𝐴𝑘))
5424, 18, 44, 53ltmul1dd 12683 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((𝐴𝑘) · (𝐴𝑘)))
5523recnd 10861 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56552timesd 12073 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
5756oveq2d 7229 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = (𝐴↑(𝑘 + 𝑘)))
5826recnd 10861 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
5958, 48, 48expaddd 13718 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6057, 59eqtrd 2777 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6154, 60breqtrrd 5081 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < (𝐴↑(2 · 𝑘)))
62 oveq2 7221 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → (𝐴𝑛) = (𝐴↑(2 · 𝑘)))
63 oveq1 7220 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → (𝑛 · 𝐵) = ((2 · 𝑘) · 𝐵))
6462, 63breq12d 5066 . . . . . . . . . 10 (𝑛 = (2 · 𝑘) → ((𝐴𝑛) ≤ (𝑛 · 𝐵) ↔ (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
65 ostth2lem1.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
6665ralrimiva 3105 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6766ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6864, 67, 30rspcdva 3539 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵))
6925, 32, 35, 61, 68ltletrd 10992 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((2 · 𝑘) · 𝐵))
7021recnd 10861 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℂ)
7118recnd 10861 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
7270, 71, 55mul32d 11042 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) = (((𝐴 − 1) · 𝑘) · (𝐴𝑘)))
73 2cnd 11908 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
7434recnd 10861 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
7573, 74, 55mul32d 11042 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) · 𝑘) = ((2 · 𝑘) · 𝐵))
7669, 72, 753brtr4d 5085 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘))
7721, 18remulcld 10863 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ)
785adantr 484 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝐵) ∈ ℝ)
79 nngt0 11861 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
8079adantl 485 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
81 ltmul1 11682 . . . . . . . 8 ((((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8277, 78, 23, 80, 81syl112anc 1376 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8376, 82mpbird 260 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵))
8412rpgt0d 12631 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 0 < (𝐴 − 1))
8584adantr 484 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < (𝐴 − 1))
86 ltmuldiv2 11706 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ ((𝐴 − 1) ∈ ℝ ∧ 0 < (𝐴 − 1))) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8718, 78, 21, 85, 86syl112anc 1376 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8883, 87mpbid 235 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1)))
8918, 19, 88ltnsymd 10981 . . . 4 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ¬ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9089nrexdv 3189 . . 3 ((𝜑 ∧ 1 < 𝐴) → ¬ ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9115, 90pm2.65da 817 . 2 (𝜑 → ¬ 1 < 𝐴)
92 lenlt 10911 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
938, 7, 92sylancl 589 . 2 (𝜑 → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
9491, 93mpbird 260 1 (𝜑𝐴 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062   class class class wbr 5053  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  0cn0 12090  cz 12176  +crp 12586  cexp 13635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fl 13367  df-seq 13575  df-exp 13636
This theorem is referenced by:  ostth2lem4  26517
  Copyright terms: Public domain W3C validator