![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnateq | Structured version Visualization version GIF version |
Description: If any atom (under 𝑊) is not equal to its translation, so is any other atom. (Contributed by NM, 6-May-2013.) |
Ref | Expression |
---|---|
ltrn2eq.l | ⊢ ≤ = (le‘𝐾) |
ltrn2eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrn2eq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn2eq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnateq | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrn2eq.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | ltrn2eq.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | ltrn2eq.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ltrn2eq.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | ltrn2ateq 36336 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) = 𝑃 ↔ (𝐹‘𝑄) = 𝑄)) |
6 | 5 | biimp3a 1542 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 lecple 16345 Atomscatm 35419 HLchlt 35506 LHypclh 36140 LTrncltrn 36257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-oposet 35332 df-ol 35334 df-oml 35335 df-covers 35422 df-ats 35423 df-atl 35454 df-cvlat 35478 df-hlat 35507 df-lhyp 36144 df-laut 36145 df-ldil 36260 df-ltrn 36261 df-trl 36315 |
This theorem is referenced by: cdlemc6 36352 cdlemg14f 36809 cdlemg14g 36810 cdlemg44b 36888 |
Copyright terms: Public domain | W3C validator |