Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnateq Structured version   Visualization version   GIF version

Theorem ltrnateq 40121
Description: If any atom (under 𝑊) is not equal to its translation, so is any other atom. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
ltrn2eq.l = (le‘𝐾)
ltrn2eq.a 𝐴 = (Atoms‘𝐾)
ltrn2eq.h 𝐻 = (LHyp‘𝐾)
ltrn2eq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnateq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)

Proof of Theorem ltrnateq
StepHypRef Expression
1 ltrn2eq.l . . 3 = (le‘𝐾)
2 ltrn2eq.a . . 3 𝐴 = (Atoms‘𝐾)
3 ltrn2eq.h . . 3 𝐻 = (LHyp‘𝐾)
4 ltrn2eq.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4ltrn2ateq 40120 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
65biimp3a 1470 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5116  cfv 6527  lecple 17263  Atomscatm 39202  HLchlt 39289  LHypclh 39924  LTrncltrn 40041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-map 8836  df-proset 18291  df-poset 18310  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 39115  df-ol 39117  df-oml 39118  df-covers 39205  df-ats 39206  df-atl 39237  df-cvlat 39261  df-hlat 39290  df-lhyp 39928  df-laut 39929  df-ldil 40044  df-ltrn 40045  df-trl 40099
This theorem is referenced by:  cdlemc6  40136  cdlemg14f  40593  cdlemg14g  40594  cdlemg44b  40672
  Copyright terms: Public domain W3C validator