![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnatneq | Structured version Visualization version GIF version |
Description: If any atom (under 𝑊) is not equal to its translation, so is any other atom. TODO: ¬ 𝑃 ≤ 𝑊 isn't needed to prove this. Will removing it shorten (and not lengthen) proofs using it? (Contributed by NM, 6-May-2013.) |
Ref | Expression |
---|---|
ltrn2eq.l | ⊢ ≤ = (le‘𝐾) |
ltrn2eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrn2eq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn2eq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnatneq | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ≠ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrn2eq.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | ltrn2eq.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | ltrn2eq.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ltrn2eq.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | ltrn2ateq 36248 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) = 𝑃 ↔ (𝐹‘𝑄) = 𝑄)) |
6 | 5 | necon3bid 3043 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ≠ 𝑃 ↔ (𝐹‘𝑄) ≠ 𝑄)) |
7 | 6 | biimp3a 1597 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ≠ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4873 ‘cfv 6123 lecple 16312 Atomscatm 35331 HLchlt 35418 LHypclh 36052 LTrncltrn 36169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-oposet 35244 df-ol 35246 df-oml 35247 df-covers 35334 df-ats 35335 df-atl 35366 df-cvlat 35390 df-hlat 35419 df-lhyp 36056 df-laut 36057 df-ldil 36172 df-ltrn 36173 df-trl 36227 |
This theorem is referenced by: ltrnatlw 36251 cdlemg13 36720 cdlemg17i 36737 cdlemg17pq 36740 cdlemg19 36752 cdlemg21 36754 |
Copyright terms: Public domain | W3C validator |