![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnatneq | Structured version Visualization version GIF version |
Description: If any atom (under 𝑊) is not equal to its translation, so is any other atom. TODO: ¬ 𝑃 ≤ 𝑊 isn't needed to prove this. Will removing it shorten (and not lengthen) proofs using it? (Contributed by NM, 6-May-2013.) |
Ref | Expression |
---|---|
ltrn2eq.l | ⊢ ≤ = (le‘𝐾) |
ltrn2eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrn2eq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn2eq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnatneq | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ≠ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrn2eq.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | ltrn2eq.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | ltrn2eq.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ltrn2eq.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | ltrn2ateq 39545 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) = 𝑃 ↔ (𝐹‘𝑄) = 𝑄)) |
6 | 5 | necon3bid 2977 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ≠ 𝑃 ↔ (𝐹‘𝑄) ≠ 𝑄)) |
7 | 6 | biimp3a 1465 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ≠ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5139 ‘cfv 6534 lecple 17205 Atomscatm 38627 HLchlt 38714 LHypclh 39349 LTrncltrn 39466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-map 8819 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38540 df-ol 38542 df-oml 38543 df-covers 38630 df-ats 38631 df-atl 38662 df-cvlat 38686 df-hlat 38715 df-lhyp 39353 df-laut 39354 df-ldil 39469 df-ltrn 39470 df-trl 39524 |
This theorem is referenced by: ltrnatlw 39548 cdlemg13 40017 cdlemg17i 40034 cdlemg17pq 40037 cdlemg19 40049 cdlemg21 40051 |
Copyright terms: Public domain | W3C validator |