Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc6 Structured version   Visualization version   GIF version

Theorem cdlemc6 36155
Description: Lemma for cdlemc 36156. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l = (le‘𝐾)
cdlemc3.j = (join‘𝐾)
cdlemc3.m = (meet‘𝐾)
cdlemc3.a 𝐴 = (Atoms‘𝐾)
cdlemc3.h 𝐻 = (LHyp‘𝐾)
cdlemc3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemc3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Proof of Theorem cdlemc6
StepHypRef Expression
1 simp1l 1254 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ HL)
2 simp22l 1391 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
3 simp23l 1393 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑄𝐴)
4 cdlemc3.j . . . . . 6 = (join‘𝐾)
5 cdlemc3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 35327 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
71, 2, 3, 6syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑄) = (𝑄 𝑃))
87oveq2d 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑃 𝑄)) = (𝑄 (𝑄 𝑃)))
91hllatd 35323 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ Lat)
10 eqid 2765 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1110, 5atbase 35248 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
123, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑄 ∈ (Base‘𝐾))
1310, 5atbase 35248 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
142, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃 ∈ (Base‘𝐾))
15 cdlemc3.m . . . . 5 = (meet‘𝐾)
1610, 4, 15latabs2 17357 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 (𝑄 𝑃)) = 𝑄)
179, 12, 14, 16syl3anc 1490 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑄 𝑃)) = 𝑄)
188, 17eqtrd 2799 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑃 𝑄)) = 𝑄)
19 simp1 1166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simp22 1264 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simp21 1263 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
22 simp3 1168 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
23 cdlemc3.l . . . . . . 7 = (le‘𝐾)
24 eqid 2765 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
25 cdlemc3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
26 cdlemc3.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
27 cdlemc3.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
2823, 24, 5, 25, 26, 27trl0 36129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
2919, 20, 21, 22, 28syl112anc 1493 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
3029oveq2d 6860 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑅𝐹)) = (𝑄 (0.‘𝐾)))
31 hlol 35320 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
321, 31syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ OL)
3310, 4, 24olj01 35184 . . . . 5 ((𝐾 ∈ OL ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 (0.‘𝐾)) = 𝑄)
3432, 12, 33syl2anc 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (0.‘𝐾)) = 𝑄)
3530, 34eqtrd 2799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝑅𝐹)) = 𝑄)
3622oveq1d 6859 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) = (𝑃 ((𝑃 𝑄) 𝑊)))
3710, 4, 5hlatjcl 35326 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
381, 2, 3, 37syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑄) ∈ (Base‘𝐾))
39 simp1r 1255 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑊𝐻)
4010, 25lhpbase 35957 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4139, 40syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑊 ∈ (Base‘𝐾))
4210, 15latmcl 17321 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
439, 38, 41, 42syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
4410, 4latjcom 17328 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → (𝑃 ((𝑃 𝑄) 𝑊)) = (((𝑃 𝑄) 𝑊) 𝑃))
459, 14, 43, 44syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 ((𝑃 𝑄) 𝑊)) = (((𝑃 𝑄) 𝑊) 𝑃))
4623, 4, 5hlatlej1 35334 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
471, 2, 3, 46syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃 (𝑃 𝑄))
4810, 23, 4, 15, 5atmod2i1 35820 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑄)) → (((𝑃 𝑄) 𝑊) 𝑃) = ((𝑃 𝑄) (𝑊 𝑃)))
491, 2, 38, 41, 47, 48syl131anc 1502 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (((𝑃 𝑄) 𝑊) 𝑃) = ((𝑃 𝑄) (𝑊 𝑃)))
50 eqid 2765 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
5123, 4, 50, 5, 25lhpjat1 35979 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = (1.‘𝐾))
521, 39, 20, 51syl21anc 866 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑊 𝑃) = (1.‘𝐾))
5352oveq2d 6860 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 𝑄) (𝑊 𝑃)) = ((𝑃 𝑄) (1.‘𝐾)))
5410, 15, 50olm11 35186 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
5532, 38, 54syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
5649, 53, 553eqtrd 2803 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (((𝑃 𝑄) 𝑊) 𝑃) = (𝑃 𝑄))
5736, 45, 563eqtrd 2803 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝐹𝑃) ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
5835, 57oveq12d 6862 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))) = (𝑄 (𝑃 𝑄)))
5923, 5, 25, 26ltrnateq 36140 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)
6018, 58, 593eqtr4rd 2810 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4811  cfv 6070  (class class class)co 6844  Basecbs 16133  lecple 16224  joincjn 17213  meetcmee 17214  0.cp0 17306  1.cp1 17307  Latclat 17314  OLcol 35133  Atomscatm 35222  HLchlt 35309  LHypclh 35943  LTrncltrn 36060  trLctrl 36117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-1st 7368  df-2nd 7369  df-map 8064  df-proset 17197  df-poset 17215  df-plt 17227  df-lub 17243  df-glb 17244  df-join 17245  df-meet 17246  df-p0 17308  df-p1 17309  df-lat 17315  df-clat 17377  df-oposet 35135  df-ol 35137  df-oml 35138  df-covers 35225  df-ats 35226  df-atl 35257  df-cvlat 35281  df-hlat 35310  df-psubsp 35462  df-pmap 35463  df-padd 35755  df-lhyp 35947  df-laut 35948  df-ldil 36063  df-ltrn 36064  df-trl 36118
This theorem is referenced by:  cdlemc  36156
  Copyright terms: Public domain W3C validator