![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mon1pn0 | Structured version Visualization version GIF version |
Description: Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pn0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pn0.z | ⊢ 0 = (0g‘𝑃) |
mon1pn0.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
mon1pn0 | ⊢ (𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uc1pn0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | eqid 2772 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
3 | uc1pn0.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
4 | eqid 2772 | . . 3 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
5 | mon1pn0.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
6 | eqid 2772 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 24429 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) = (1r‘𝑅))) |
8 | 7 | simp2bi 1126 | 1 ⊢ (𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ‘cfv 6182 Basecbs 16329 0gc0g 16559 1rcur 18964 Poly1cpl1 20038 coe1cco1 20039 deg1 cdg1 24341 Monic1pcmn1 24412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-iota 6146 df-fun 6184 df-fv 6190 df-slot 16333 df-base 16335 df-mon1 24417 |
This theorem is referenced by: mon1puc1p 24437 deg1submon1p 24439 mon1psubm 39147 |
Copyright terms: Public domain | W3C validator |