| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mon1pn0 | Structured version Visualization version GIF version | ||
| Description: Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pn0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pn0.z | ⊢ 0 = (0g‘𝑃) |
| mon1pn0.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| Ref | Expression |
|---|---|
| mon1pn0 | ⊢ (𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pn0.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | eqid 2736 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 3 | uc1pn0.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
| 4 | eqid 2736 | . . 3 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | mon1pn0.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2736 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26105 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) = (1r‘𝑅))) |
| 8 | 7 | simp2bi 1146 | 1 ⊢ (𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ‘cfv 6536 Basecbs 17233 0gc0g 17458 1rcur 20146 Poly1cpl1 22117 coe1cco1 22118 deg1cdg1 26016 Monic1pcmn1 26088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-slot 17206 df-ndx 17218 df-base 17234 df-mon1 26093 |
| This theorem is referenced by: mon1puc1p 26113 deg1submon1p 26115 m1pmeq 33601 irngnzply1 33737 mon1psubm 43190 |
| Copyright terms: Public domain | W3C validator |