MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pn0 Structured version   Visualization version   GIF version

Theorem mon1pn0 24433
Description: Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pn0.p 𝑃 = (Poly1𝑅)
uc1pn0.z 0 = (0g𝑃)
mon1pn0.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
mon1pn0 (𝐹𝑀𝐹0 )

Proof of Theorem mon1pn0
StepHypRef Expression
1 uc1pn0.p . . 3 𝑃 = (Poly1𝑅)
2 eqid 2772 . . 3 (Base‘𝑃) = (Base‘𝑃)
3 uc1pn0.z . . 3 0 = (0g𝑃)
4 eqid 2772 . . 3 ( deg1𝑅) = ( deg1𝑅)
5 mon1pn0.m . . 3 𝑀 = (Monic1p𝑅)
6 eqid 2772 . . 3 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 24429 . 2 (𝐹𝑀 ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹0 ∧ ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) = (1r𝑅)))
87simp2bi 1126 1 (𝐹𝑀𝐹0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  wne 2961  cfv 6182  Basecbs 16329  0gc0g 16559  1rcur 18964  Poly1cpl1 20038  coe1cco1 20039   deg1 cdg1 24341  Monic1pcmn1 24412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-iota 6146  df-fun 6184  df-fv 6190  df-slot 16333  df-base 16335  df-mon1 24417
This theorem is referenced by:  mon1puc1p  24437  deg1submon1p  24439  mon1psubm  39147
  Copyright terms: Public domain W3C validator