![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uc1pdeg | Structured version Visualization version GIF version |
Description: Unitic polynomials have nonnegative degrees. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pdeg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
uc1pdeg.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
uc1pdeg | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶) → (𝐷‘𝐹) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶) → 𝑅 ∈ Ring) | |
2 | eqid 2730 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
3 | eqid 2730 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
4 | uc1pdeg.c | . . . 4 ⊢ 𝐶 = (Unic1p‘𝑅) | |
5 | 2, 3, 4 | uc1pcl 25896 | . . 3 ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ (Base‘(Poly1‘𝑅))) |
6 | 5 | adantl 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶) → 𝐹 ∈ (Base‘(Poly1‘𝑅))) |
7 | eqid 2730 | . . . 4 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
8 | 2, 7, 4 | uc1pn0 25898 | . . 3 ⊢ (𝐹 ∈ 𝐶 → 𝐹 ≠ (0g‘(Poly1‘𝑅))) |
9 | 8 | adantl 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶) → 𝐹 ≠ (0g‘(Poly1‘𝑅))) |
10 | uc1pdeg.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | 10, 2, 7, 3 | deg1nn0cl 25841 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝐹 ≠ (0g‘(Poly1‘𝑅))) → (𝐷‘𝐹) ∈ ℕ0) |
12 | 1, 6, 9, 11 | syl3anc 1369 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶) → (𝐷‘𝐹) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ‘cfv 6542 ℕ0cn0 12476 Basecbs 17148 0gc0g 17389 Ringcrg 20127 Poly1cpl1 21920 deg1 cdg1 25804 Unic1pcuc1p 25879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-gsum 17392 df-prds 17397 df-pws 17399 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-subg 19039 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-ur 20076 df-ring 20129 df-cring 20130 df-cnfld 21145 df-psr 21681 df-mpl 21683 df-opsr 21685 df-psr1 21923 df-ply1 21925 df-mdeg 25805 df-deg1 25806 df-uc1p 25884 |
This theorem is referenced by: uc1pmon1p 25904 dvdsq1p 25913 |
Copyright terms: Public domain | W3C validator |