| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjeq | Structured version Visualization version GIF version | ||
| Description: Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
| dpjidcl.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) |
| dpjidcl.0 | ⊢ 0 = (0g‘𝐺) |
| dpjidcl.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dpjeq.c | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dpjeq | ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dpjfval.p | . . . . 5 ⊢ 𝑃 = (𝐺dProj𝑆) | |
| 4 | dpjidcl.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) | |
| 5 | dpjidcl.0 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 6 | dpjidcl.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 7 | 1, 2, 3, 4, 5, 6 | dpjidcl 19939 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) |
| 9 | 8 | eqeq1d 2731 | . 2 ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)))) |
| 10 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊) |
| 11 | dpjeq.c | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) | |
| 12 | 5, 6, 1, 2, 10, 11 | dprdf11 19904 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ 𝐶))) |
| 13 | fvex 6835 | . . . 4 ⊢ ((𝑃‘𝑥)‘𝐴) ∈ V | |
| 14 | 13 | rgenw 3048 | . . 3 ⊢ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) ∈ V |
| 15 | mpteqb 6949 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ 𝐶) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) | |
| 16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ 𝐶) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) |
| 17 | 9, 12, 16 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Xcixp 8824 finSupp cfsupp 9251 0gc0g 17343 Σg cgsu 17344 DProd cdprd 19874 dProjcdpj 19875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-gim 19138 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-pj1 19516 df-cmn 19661 df-dprd 19876 df-dpj 19877 |
| This theorem is referenced by: dpjrid 19943 dchrptlem3 27175 |
| Copyright terms: Public domain | W3C validator |