| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjeq | Structured version Visualization version GIF version | ||
| Description: Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
| dpjidcl.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) |
| dpjidcl.0 | ⊢ 0 = (0g‘𝐺) |
| dpjidcl.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| dpjeq.c | ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dpjeq | ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dpjfval.p | . . . . 5 ⊢ 𝑃 = (𝐺dProj𝑆) | |
| 4 | dpjidcl.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) | |
| 5 | dpjidcl.0 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 6 | dpjidcl.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 7 | 1, 2, 3, 4, 5, 6 | dpjidcl 19996 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) |
| 9 | 8 | eqeq1d 2732 | . 2 ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)))) |
| 10 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊) |
| 11 | dpjeq.c | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐶) ∈ 𝑊) | |
| 12 | 5, 6, 1, 2, 10, 11 | dprdf11 19961 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ 𝐶))) |
| 13 | fvex 6878 | . . . 4 ⊢ ((𝑃‘𝑥)‘𝐴) ∈ V | |
| 14 | 13 | rgenw 3050 | . . 3 ⊢ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) ∈ V |
| 15 | mpteqb 6994 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ 𝐶) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) | |
| 16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ 𝐶) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) |
| 17 | 9, 12, 16 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 𝐶)) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3046 {crab 3411 Vcvv 3455 class class class wbr 5115 ↦ cmpt 5196 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 Xcixp 8874 finSupp cfsupp 9330 0gc0g 17408 Σg cgsu 17409 DProd cdprd 19931 dProjcdpj 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-0g 17410 df-gsum 17411 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-gim 19197 df-cntz 19255 df-oppg 19284 df-lsm 19572 df-pj1 19573 df-cmn 19718 df-dprd 19933 df-dpj 19934 |
| This theorem is referenced by: dpjrid 20000 dchrptlem3 27184 |
| Copyright terms: Public domain | W3C validator |