MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Structured version   Visualization version   GIF version

Theorem 2sqblem 27349
Description: Lemma for 2sqb 27350. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2sqb.2 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
2sqb.3 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
2sqb.4 (𝜑𝐴 ∈ ℤ)
2sqb.5 (𝜑𝐵 ∈ ℤ)
2sqb.6 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
Assertion
Ref Expression
2sqblem (𝜑 → (𝑃 mod 4) = 1)

Proof of Theorem 2sqblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
21simpld 494 . . . . 5 (𝜑𝑃 ∈ ℙ)
3 nprmdvds1 16683 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
42, 3syl 17 . . . 4 (𝜑 → ¬ 𝑃 ∥ 1)
5 prmz 16652 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
62, 5syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
7 1z 12570 . . . . 5 1 ∈ ℤ
8 dvdsnegb 16250 . . . . 5 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
96, 7, 8sylancl 586 . . . 4 (𝜑 → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
104, 9mtbid 324 . . 3 (𝜑 → ¬ 𝑃 ∥ -1)
11 2sqb.2 . . . . . 6 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
1211simpld 494 . . . . 5 (𝜑𝑋 ∈ ℤ)
13 2sqb.5 . . . . 5 (𝜑𝐵 ∈ ℤ)
1412, 13zmulcld 12651 . . . 4 (𝜑 → (𝑋 · 𝐵) ∈ ℤ)
15 zsqcl 14101 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
1613, 15syl 17 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℤ)
17 dvdsmul1 16254 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐵↑2)))
186, 16, 17syl2anc 584 . . . . . . 7 (𝜑𝑃 ∥ (𝑃 · (𝐵↑2)))
1911simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℤ)
2019, 13zmulcld 12651 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℤ)
21 zsqcl 14101 . . . . . . . . . . . 12 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵)↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℤ)
23 peano2zm 12583 . . . . . . . . . . 11 (((𝑌 · 𝐵)↑2) ∈ ℤ → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2524zcnd 12646 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℂ)
26 zsqcl 14101 . . . . . . . . . . . 12 ((𝑋 · 𝐵) ∈ ℤ → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2714, 26syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2827peano2zd 12648 . . . . . . . . . 10 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ)
2928zcnd 12646 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℂ)
3025, 29addcomd 11383 . . . . . . . 8 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)))
3127zcnd 12646 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℂ)
32 ax-1cn 11133 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
3422zcnd 12646 . . . . . . . . 9 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℂ)
3531, 33, 34ppncand 11580 . . . . . . . 8 (𝜑 → ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)) = (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)))
36 zsqcl 14101 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℤ)
3712, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑋↑2) ∈ ℤ)
3837zcnd 12646 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
39 zsqcl 14101 . . . . . . . . . . . 12 (𝑌 ∈ ℤ → (𝑌↑2) ∈ ℤ)
4019, 39syl 17 . . . . . . . . . . 11 (𝜑 → (𝑌↑2) ∈ ℤ)
4140zcnd 12646 . . . . . . . . . 10 (𝜑 → (𝑌↑2) ∈ ℂ)
4216zcnd 12646 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
4338, 41, 42adddird 11206 . . . . . . . . 9 (𝜑 → (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
44 2sqb.3 . . . . . . . . . 10 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
4544oveq1d 7405 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐵↑2)) = (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)))
4612zcnd 12646 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4713zcnd 12646 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4846, 47sqmuld 14130 . . . . . . . . . 10 (𝜑 → ((𝑋 · 𝐵)↑2) = ((𝑋↑2) · (𝐵↑2)))
4919zcnd 12646 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
5049, 47sqmuld 14130 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵)↑2) = ((𝑌↑2) · (𝐵↑2)))
5148, 50oveq12d 7408 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
5243, 45, 513eqtr4rd 2776 . . . . . . . 8 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (𝑃 · (𝐵↑2)))
5330, 35, 523eqtrd 2769 . . . . . . 7 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = (𝑃 · (𝐵↑2)))
5418, 53breqtrrd 5138 . . . . . 6 (𝜑𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)))
55 2sqb.4 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
56 dvdsmul1 16254 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝐴))
576, 55, 56syl2anc 584 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃 · 𝐴))
586, 55zmulcld 12651 . . . . . . . . . . . 12 (𝜑 → (𝑃 · 𝐴) ∈ ℤ)
59 dvdsnegb 16250 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃 · 𝐴) ∈ ℤ) → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
606, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
6157, 60mpbid 232 . . . . . . . . . 10 (𝜑𝑃 ∥ -(𝑃 · 𝐴))
6220zcnd 12646 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℂ)
63 negsubdi2 11488 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑌 · 𝐵) ∈ ℂ) → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6432, 62, 63sylancr 587 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6558zcnd 12646 . . . . . . . . . . . . 13 (𝜑 → (𝑃 · 𝐴) ∈ ℂ)
6619zred 12645 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℝ)
67 absresq 15275 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ ℝ → ((abs‘𝑌)↑2) = (𝑌↑2))
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌)↑2) = (𝑌↑2))
6966resqcld 14097 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ∈ ℝ)
70 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
712, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
7271nnred 12208 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℝ)
7372resqcld 14097 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃↑2) ∈ ℝ)
74 zsqcl2 14110 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℕ0)
7512, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋↑2) ∈ ℕ0)
76 nn0addge2 12496 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑌↑2) ∈ ℝ ∧ (𝑋↑2) ∈ ℕ0) → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7769, 75, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7877, 44breqtrrd 5138 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ≤ 𝑃)
796zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑃 ∈ ℂ)
8079exp1d 14113 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) = 𝑃)
817a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ∈ ℤ)
82 2z 12572 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℤ
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℤ)
84 prmuz2 16673 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
852, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ∈ (ℤ‘2))
86 eluz2gt1 12886 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑃)
88 1lt2 12359 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 2)
90 ltexp2a 14138 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℝ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 < 𝑃 ∧ 1 < 2)) → (𝑃↑1) < (𝑃↑2))
9172, 81, 83, 87, 89, 90syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) < (𝑃↑2))
9280, 91eqbrtrrd 5134 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 < (𝑃↑2))
9369, 72, 73, 78, 92lelttrd 11339 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌↑2) < (𝑃↑2))
9468, 93eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌)↑2) < (𝑃↑2))
9549abscld 15412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘𝑌) ∈ ℝ)
9649absge0d 15420 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘𝑌))
9771nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
9897nn0ge0d 12513 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑃)
9995, 72, 96, 98lt2sqd 14228 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ((abs‘𝑌)↑2) < (𝑃↑2)))
10094, 99mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) < 𝑃)
1016zred 12645 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℝ)
10295, 101ltnled 11328 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ¬ 𝑃 ≤ (abs‘𝑌)))
103100, 102mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 ≤ (abs‘𝑌))
104 sqnprm 16679 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℤ → ¬ (𝑋↑2) ∈ ℙ)
10512, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑋↑2) ∈ ℙ)
10649abs00ad 15263 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) = 0 ↔ 𝑌 = 0))
10744, 2eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + (𝑌↑2)) ∈ ℙ)
108 sq0i 14165 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌 = 0 → (𝑌↑2) = 0)
109108oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌 = 0 → ((𝑋↑2) + (𝑌↑2)) = ((𝑋↑2) + 0))
110109eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 = 0 → (((𝑋↑2) + (𝑌↑2)) ∈ ℙ ↔ ((𝑋↑2) + 0) ∈ ℙ))
111107, 110syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 = 0 → ((𝑋↑2) + 0) ∈ ℙ))
11238addridd 11381 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + 0) = (𝑋↑2))
113112eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑋↑2) + 0) ∈ ℙ ↔ (𝑋↑2) ∈ ℙ))
114111, 113sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌 = 0 → (𝑋↑2) ∈ ℙ))
115106, 114sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) = 0 → (𝑋↑2) ∈ ℙ))
116105, 115mtod 198 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (abs‘𝑌) = 0)
117 nn0abscl 15285 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ ℤ → (abs‘𝑌) ∈ ℕ0)
11819, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (abs‘𝑌) ∈ ℕ0)
119 elnn0 12451 . . . . . . . . . . . . . . . . . . . . 21 ((abs‘𝑌) ∈ ℕ0 ↔ ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
120118, 119sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
121120ord 864 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (¬ (abs‘𝑌) ∈ ℕ → (abs‘𝑌) = 0))
122116, 121mt3d 148 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) ∈ ℕ)
123 dvdsle 16287 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ (abs‘𝑌) ∈ ℕ) → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
1246, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
125103, 124mtod 198 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑃 ∥ (abs‘𝑌))
126 dvdsabsb 16252 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
1276, 19, 126syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
128125, 127mtbird 325 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑃𝑌)
129 coprm 16688 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑌 ∈ ℤ) → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
1302, 19, 129syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
131128, 130mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = 1)
132 2sqb.6 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
133131, 132eqtr3d 2767 . . . . . . . . . . . . 13 (𝜑 → 1 = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
13465, 62, 133mvrraddd 11597 . . . . . . . . . . . 12 (𝜑 → (1 − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
135134negeqd 11422 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = -(𝑃 · 𝐴))
13664, 135eqtr3d 2767 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) = -(𝑃 · 𝐴))
13761, 136breqtrrd 5138 . . . . . . . . 9 (𝜑𝑃 ∥ ((𝑌 · 𝐵) − 1))
13820peano2zd 12648 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) + 1) ∈ ℤ)
139 peano2zm 12583 . . . . . . . . . . 11 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵) − 1) ∈ ℤ)
14020, 139syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) ∈ ℤ)
141 dvdsmultr2 16275 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝑌 · 𝐵) + 1) ∈ ℤ ∧ ((𝑌 · 𝐵) − 1) ∈ ℤ) → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
1426, 138, 140, 141syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
143137, 142mpd 15 . . . . . . . 8 (𝜑𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
144 sq1 14167 . . . . . . . . . 10 (1↑2) = 1
145144oveq2i 7401 . . . . . . . . 9 (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵)↑2) − 1)
146 subsq 14182 . . . . . . . . . 10 (((𝑌 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
14762, 32, 146sylancl 586 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
148145, 147eqtr3id 2779 . . . . . . . 8 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
149143, 148breqtrrd 5138 . . . . . . 7 (𝜑𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))
150 dvdsadd2b 16283 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ ∧ ((((𝑌 · 𝐵)↑2) − 1) ∈ ℤ ∧ 𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))) → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
1516, 28, 24, 149, 150syl112anc 1376 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
15254, 151mpbird 257 . . . . 5 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1))
153 subneg 11478 . . . . . 6 ((((𝑋 · 𝐵)↑2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
15431, 32, 153sylancl 586 . . . . 5 (𝜑 → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
155152, 154breqtrrd 5138 . . . 4 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1))
156 oveq1 7397 . . . . . . 7 (𝑥 = (𝑋 · 𝐵) → (𝑥↑2) = ((𝑋 · 𝐵)↑2))
157156oveq1d 7405 . . . . . 6 (𝑥 = (𝑋 · 𝐵) → ((𝑥↑2) − -1) = (((𝑋 · 𝐵)↑2) − -1))
158157breq2d 5122 . . . . 5 (𝑥 = (𝑋 · 𝐵) → (𝑃 ∥ ((𝑥↑2) − -1) ↔ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)))
159158rspcev 3591 . . . 4 (((𝑋 · 𝐵) ∈ ℤ ∧ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
16014, 155, 159syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
161 neg1z 12576 . . . 4 -1 ∈ ℤ
162 eldifsn 4753 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1631, 162sylibr 234 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
164 lgsqr 27269 . . . 4 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
165161, 163, 164sylancr 587 . . 3 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
16610, 160, 165mpbir2and 713 . 2 (𝜑 → (-1 /L 𝑃) = 1)
167 m1lgs 27306 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
168163, 167syl 17 . 2 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
169166, 168mpbid 232 1 (𝜑 → (𝑃 mod 4) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413  cn 12193  2c2 12248  4c4 12250  0cn0 12449  cz 12536  cuz 12800   mod cmo 13838  cexp 14033  abscabs 15207  cdvds 16229   gcd cgcd 16471  cprime 16648   /L clgs 27212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-lgs 27213
This theorem is referenced by:  2sqb  27350
  Copyright terms: Public domain W3C validator