MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Structured version   Visualization version   GIF version

Theorem 2sqblem 26007
Description: Lemma for 2sqb 26008. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2sqb.2 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
2sqb.3 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
2sqb.4 (𝜑𝐴 ∈ ℤ)
2sqb.5 (𝜑𝐵 ∈ ℤ)
2sqb.6 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
Assertion
Ref Expression
2sqblem (𝜑 → (𝑃 mod 4) = 1)

Proof of Theorem 2sqblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
21simpld 497 . . . . 5 (𝜑𝑃 ∈ ℙ)
3 nprmdvds1 16050 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
42, 3syl 17 . . . 4 (𝜑 → ¬ 𝑃 ∥ 1)
5 prmz 16019 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
62, 5syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
7 1z 12013 . . . . 5 1 ∈ ℤ
8 dvdsnegb 15627 . . . . 5 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
96, 7, 8sylancl 588 . . . 4 (𝜑 → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
104, 9mtbid 326 . . 3 (𝜑 → ¬ 𝑃 ∥ -1)
11 2sqb.2 . . . . . 6 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
1211simpld 497 . . . . 5 (𝜑𝑋 ∈ ℤ)
13 2sqb.5 . . . . 5 (𝜑𝐵 ∈ ℤ)
1412, 13zmulcld 12094 . . . 4 (𝜑 → (𝑋 · 𝐵) ∈ ℤ)
15 zsqcl 13495 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
1613, 15syl 17 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℤ)
17 dvdsmul1 15631 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐵↑2)))
186, 16, 17syl2anc 586 . . . . . . 7 (𝜑𝑃 ∥ (𝑃 · (𝐵↑2)))
1911simprd 498 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℤ)
2019, 13zmulcld 12094 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℤ)
21 zsqcl 13495 . . . . . . . . . . . 12 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵)↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℤ)
23 peano2zm 12026 . . . . . . . . . . 11 (((𝑌 · 𝐵)↑2) ∈ ℤ → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2524zcnd 12089 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℂ)
26 zsqcl 13495 . . . . . . . . . . . 12 ((𝑋 · 𝐵) ∈ ℤ → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2714, 26syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2827peano2zd 12091 . . . . . . . . . 10 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ)
2928zcnd 12089 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℂ)
3025, 29addcomd 10842 . . . . . . . 8 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)))
3127zcnd 12089 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℂ)
32 ax-1cn 10595 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
3422zcnd 12089 . . . . . . . . 9 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℂ)
3531, 33, 34ppncand 11037 . . . . . . . 8 (𝜑 → ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)) = (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)))
36 zsqcl 13495 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℤ)
3712, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑋↑2) ∈ ℤ)
3837zcnd 12089 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
39 zsqcl 13495 . . . . . . . . . . . 12 (𝑌 ∈ ℤ → (𝑌↑2) ∈ ℤ)
4019, 39syl 17 . . . . . . . . . . 11 (𝜑 → (𝑌↑2) ∈ ℤ)
4140zcnd 12089 . . . . . . . . . 10 (𝜑 → (𝑌↑2) ∈ ℂ)
4216zcnd 12089 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
4338, 41, 42adddird 10666 . . . . . . . . 9 (𝜑 → (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
44 2sqb.3 . . . . . . . . . 10 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
4544oveq1d 7171 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐵↑2)) = (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)))
4612zcnd 12089 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4713zcnd 12089 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4846, 47sqmuld 13523 . . . . . . . . . 10 (𝜑 → ((𝑋 · 𝐵)↑2) = ((𝑋↑2) · (𝐵↑2)))
4919zcnd 12089 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
5049, 47sqmuld 13523 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵)↑2) = ((𝑌↑2) · (𝐵↑2)))
5148, 50oveq12d 7174 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
5243, 45, 513eqtr4rd 2867 . . . . . . . 8 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (𝑃 · (𝐵↑2)))
5330, 35, 523eqtrd 2860 . . . . . . 7 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = (𝑃 · (𝐵↑2)))
5418, 53breqtrrd 5094 . . . . . 6 (𝜑𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)))
55 2sqb.4 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
56 dvdsmul1 15631 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝐴))
576, 55, 56syl2anc 586 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃 · 𝐴))
586, 55zmulcld 12094 . . . . . . . . . . . 12 (𝜑 → (𝑃 · 𝐴) ∈ ℤ)
59 dvdsnegb 15627 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃 · 𝐴) ∈ ℤ) → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
606, 58, 59syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
6157, 60mpbid 234 . . . . . . . . . 10 (𝜑𝑃 ∥ -(𝑃 · 𝐴))
6220zcnd 12089 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℂ)
63 negsubdi2 10945 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑌 · 𝐵) ∈ ℂ) → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6432, 62, 63sylancr 589 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6558zcnd 12089 . . . . . . . . . . . . 13 (𝜑 → (𝑃 · 𝐴) ∈ ℂ)
6619zred 12088 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℝ)
67 absresq 14662 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ ℝ → ((abs‘𝑌)↑2) = (𝑌↑2))
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌)↑2) = (𝑌↑2))
6966resqcld 13612 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ∈ ℝ)
70 prmnn 16018 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
712, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
7271nnred 11653 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℝ)
7372resqcld 13612 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃↑2) ∈ ℝ)
74 zsqcl2 13503 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℕ0)
7512, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋↑2) ∈ ℕ0)
76 nn0addge2 11945 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑌↑2) ∈ ℝ ∧ (𝑋↑2) ∈ ℕ0) → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7769, 75, 76syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7877, 44breqtrrd 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ≤ 𝑃)
796zcnd 12089 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑃 ∈ ℂ)
8079exp1d 13506 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) = 𝑃)
817a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ∈ ℤ)
82 2z 12015 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℤ
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℤ)
84 prmuz2 16040 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
852, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ∈ (ℤ‘2))
86 eluz2gt1 12321 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑃)
88 1lt2 11809 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 2)
90 ltexp2a 13531 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℝ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 < 𝑃 ∧ 1 < 2)) → (𝑃↑1) < (𝑃↑2))
9172, 81, 83, 87, 89, 90syl32anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) < (𝑃↑2))
9280, 91eqbrtrrd 5090 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 < (𝑃↑2))
9369, 72, 73, 78, 92lelttrd 10798 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌↑2) < (𝑃↑2))
9468, 93eqbrtrd 5088 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌)↑2) < (𝑃↑2))
9549abscld 14796 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘𝑌) ∈ ℝ)
9649absge0d 14804 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘𝑌))
9771nnnn0d 11956 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
9897nn0ge0d 11959 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑃)
9995, 72, 96, 98lt2sqd 13620 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ((abs‘𝑌)↑2) < (𝑃↑2)))
10094, 99mpbird 259 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) < 𝑃)
1016zred 12088 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℝ)
10295, 101ltnled 10787 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ¬ 𝑃 ≤ (abs‘𝑌)))
103100, 102mpbid 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 ≤ (abs‘𝑌))
104 sqnprm 16046 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℤ → ¬ (𝑋↑2) ∈ ℙ)
10512, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑋↑2) ∈ ℙ)
10649abs00ad 14650 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) = 0 ↔ 𝑌 = 0))
10744, 2eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + (𝑌↑2)) ∈ ℙ)
108 sq0i 13557 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌 = 0 → (𝑌↑2) = 0)
109108oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌 = 0 → ((𝑋↑2) + (𝑌↑2)) = ((𝑋↑2) + 0))
110109eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 = 0 → (((𝑋↑2) + (𝑌↑2)) ∈ ℙ ↔ ((𝑋↑2) + 0) ∈ ℙ))
111107, 110syl5ibcom 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 = 0 → ((𝑋↑2) + 0) ∈ ℙ))
11238addid1d 10840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + 0) = (𝑋↑2))
113112eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑋↑2) + 0) ∈ ℙ ↔ (𝑋↑2) ∈ ℙ))
114111, 113sylibd 241 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌 = 0 → (𝑋↑2) ∈ ℙ))
115106, 114sylbid 242 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) = 0 → (𝑋↑2) ∈ ℙ))
116105, 115mtod 200 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (abs‘𝑌) = 0)
117 nn0abscl 14672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ ℤ → (abs‘𝑌) ∈ ℕ0)
11819, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (abs‘𝑌) ∈ ℕ0)
119 elnn0 11900 . . . . . . . . . . . . . . . . . . . . 21 ((abs‘𝑌) ∈ ℕ0 ↔ ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
120118, 119sylib 220 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
121120ord 860 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (¬ (abs‘𝑌) ∈ ℕ → (abs‘𝑌) = 0))
122116, 121mt3d 150 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) ∈ ℕ)
123 dvdsle 15660 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ (abs‘𝑌) ∈ ℕ) → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
1246, 122, 123syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
125103, 124mtod 200 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑃 ∥ (abs‘𝑌))
126 dvdsabsb 15629 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
1276, 19, 126syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
128125, 127mtbird 327 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑃𝑌)
129 coprm 16055 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑌 ∈ ℤ) → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
1302, 19, 129syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
131128, 130mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = 1)
132 2sqb.6 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
133131, 132eqtr3d 2858 . . . . . . . . . . . . 13 (𝜑 → 1 = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
13465, 62, 133mvrraddd 11052 . . . . . . . . . . . 12 (𝜑 → (1 − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
135134negeqd 10880 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = -(𝑃 · 𝐴))
13664, 135eqtr3d 2858 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) = -(𝑃 · 𝐴))
13761, 136breqtrrd 5094 . . . . . . . . 9 (𝜑𝑃 ∥ ((𝑌 · 𝐵) − 1))
13820peano2zd 12091 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) + 1) ∈ ℤ)
139 peano2zm 12026 . . . . . . . . . . 11 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵) − 1) ∈ ℤ)
14020, 139syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) ∈ ℤ)
141 dvdsmultr2 15649 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝑌 · 𝐵) + 1) ∈ ℤ ∧ ((𝑌 · 𝐵) − 1) ∈ ℤ) → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
1426, 138, 140, 141syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
143137, 142mpd 15 . . . . . . . 8 (𝜑𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
144 sq1 13559 . . . . . . . . . 10 (1↑2) = 1
145144oveq2i 7167 . . . . . . . . 9 (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵)↑2) − 1)
146 subsq 13573 . . . . . . . . . 10 (((𝑌 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
14762, 32, 146sylancl 588 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
148145, 147syl5eqr 2870 . . . . . . . 8 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
149143, 148breqtrrd 5094 . . . . . . 7 (𝜑𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))
150 dvdsadd2b 15656 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ ∧ ((((𝑌 · 𝐵)↑2) − 1) ∈ ℤ ∧ 𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))) → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
1516, 28, 24, 149, 150syl112anc 1370 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
15254, 151mpbird 259 . . . . 5 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1))
153 subneg 10935 . . . . . 6 ((((𝑋 · 𝐵)↑2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
15431, 32, 153sylancl 588 . . . . 5 (𝜑 → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
155152, 154breqtrrd 5094 . . . 4 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1))
156 oveq1 7163 . . . . . . 7 (𝑥 = (𝑋 · 𝐵) → (𝑥↑2) = ((𝑋 · 𝐵)↑2))
157156oveq1d 7171 . . . . . 6 (𝑥 = (𝑋 · 𝐵) → ((𝑥↑2) − -1) = (((𝑋 · 𝐵)↑2) − -1))
158157breq2d 5078 . . . . 5 (𝑥 = (𝑋 · 𝐵) → (𝑃 ∥ ((𝑥↑2) − -1) ↔ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)))
159158rspcev 3623 . . . 4 (((𝑋 · 𝐵) ∈ ℤ ∧ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
16014, 155, 159syl2anc 586 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
161 neg1z 12019 . . . 4 -1 ∈ ℤ
162 eldifsn 4719 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1631, 162sylibr 236 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
164 lgsqr 25927 . . . 4 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
165161, 163, 164sylancr 589 . . 3 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
16610, 160, 165mpbir2and 711 . 2 (𝜑 → (-1 /L 𝑃) = 1)
167 m1lgs 25964 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
168163, 167syl 17 . 2 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
169166, 168mpbid 234 1 (𝜑 → (𝑃 mod 4) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871  cn 11638  2c2 11693  4c4 11695  0cn0 11898  cz 11982  cuz 12244   mod cmo 13238  cexp 13430  abscabs 14593  cdvds 15607   gcd cgcd 15843  cprime 16015   /L clgs 25870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-phi 16103  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-imas 16781  df-qus 16782  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-nzr 20031  df-rlreg 20056  df-domn 20057  df-idom 20058  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-evl1 20479  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654  df-mdeg 24649  df-deg1 24650  df-mon1 24724  df-uc1p 24725  df-q1p 24726  df-r1p 24727  df-lgs 25871
This theorem is referenced by:  2sqb  26008
  Copyright terms: Public domain W3C validator