MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Structured version   Visualization version   GIF version

Theorem 2sqblem 27490
Description: Lemma for 2sqb 27491. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2sqb.2 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
2sqb.3 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
2sqb.4 (𝜑𝐴 ∈ ℤ)
2sqb.5 (𝜑𝐵 ∈ ℤ)
2sqb.6 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
Assertion
Ref Expression
2sqblem (𝜑 → (𝑃 mod 4) = 1)

Proof of Theorem 2sqblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
21simpld 494 . . . . 5 (𝜑𝑃 ∈ ℙ)
3 nprmdvds1 16740 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
42, 3syl 17 . . . 4 (𝜑 → ¬ 𝑃 ∥ 1)
5 prmz 16709 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
62, 5syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
7 1z 12645 . . . . 5 1 ∈ ℤ
8 dvdsnegb 16308 . . . . 5 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
96, 7, 8sylancl 586 . . . 4 (𝜑 → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
104, 9mtbid 324 . . 3 (𝜑 → ¬ 𝑃 ∥ -1)
11 2sqb.2 . . . . . 6 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
1211simpld 494 . . . . 5 (𝜑𝑋 ∈ ℤ)
13 2sqb.5 . . . . 5 (𝜑𝐵 ∈ ℤ)
1412, 13zmulcld 12726 . . . 4 (𝜑 → (𝑋 · 𝐵) ∈ ℤ)
15 zsqcl 14166 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
1613, 15syl 17 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℤ)
17 dvdsmul1 16312 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐵↑2)))
186, 16, 17syl2anc 584 . . . . . . 7 (𝜑𝑃 ∥ (𝑃 · (𝐵↑2)))
1911simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℤ)
2019, 13zmulcld 12726 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℤ)
21 zsqcl 14166 . . . . . . . . . . . 12 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵)↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℤ)
23 peano2zm 12658 . . . . . . . . . . 11 (((𝑌 · 𝐵)↑2) ∈ ℤ → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2524zcnd 12721 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℂ)
26 zsqcl 14166 . . . . . . . . . . . 12 ((𝑋 · 𝐵) ∈ ℤ → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2714, 26syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2827peano2zd 12723 . . . . . . . . . 10 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ)
2928zcnd 12721 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℂ)
3025, 29addcomd 11461 . . . . . . . 8 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)))
3127zcnd 12721 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℂ)
32 ax-1cn 11211 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
3422zcnd 12721 . . . . . . . . 9 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℂ)
3531, 33, 34ppncand 11658 . . . . . . . 8 (𝜑 → ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)) = (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)))
36 zsqcl 14166 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℤ)
3712, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑋↑2) ∈ ℤ)
3837zcnd 12721 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
39 zsqcl 14166 . . . . . . . . . . . 12 (𝑌 ∈ ℤ → (𝑌↑2) ∈ ℤ)
4019, 39syl 17 . . . . . . . . . . 11 (𝜑 → (𝑌↑2) ∈ ℤ)
4140zcnd 12721 . . . . . . . . . 10 (𝜑 → (𝑌↑2) ∈ ℂ)
4216zcnd 12721 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
4338, 41, 42adddird 11284 . . . . . . . . 9 (𝜑 → (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
44 2sqb.3 . . . . . . . . . 10 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
4544oveq1d 7446 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐵↑2)) = (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)))
4612zcnd 12721 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4713zcnd 12721 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4846, 47sqmuld 14195 . . . . . . . . . 10 (𝜑 → ((𝑋 · 𝐵)↑2) = ((𝑋↑2) · (𝐵↑2)))
4919zcnd 12721 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
5049, 47sqmuld 14195 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵)↑2) = ((𝑌↑2) · (𝐵↑2)))
5148, 50oveq12d 7449 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
5243, 45, 513eqtr4rd 2786 . . . . . . . 8 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (𝑃 · (𝐵↑2)))
5330, 35, 523eqtrd 2779 . . . . . . 7 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = (𝑃 · (𝐵↑2)))
5418, 53breqtrrd 5176 . . . . . 6 (𝜑𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)))
55 2sqb.4 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
56 dvdsmul1 16312 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝐴))
576, 55, 56syl2anc 584 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃 · 𝐴))
586, 55zmulcld 12726 . . . . . . . . . . . 12 (𝜑 → (𝑃 · 𝐴) ∈ ℤ)
59 dvdsnegb 16308 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃 · 𝐴) ∈ ℤ) → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
606, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
6157, 60mpbid 232 . . . . . . . . . 10 (𝜑𝑃 ∥ -(𝑃 · 𝐴))
6220zcnd 12721 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℂ)
63 negsubdi2 11566 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑌 · 𝐵) ∈ ℂ) → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6432, 62, 63sylancr 587 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6558zcnd 12721 . . . . . . . . . . . . 13 (𝜑 → (𝑃 · 𝐴) ∈ ℂ)
6619zred 12720 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℝ)
67 absresq 15338 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ ℝ → ((abs‘𝑌)↑2) = (𝑌↑2))
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌)↑2) = (𝑌↑2))
6966resqcld 14162 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ∈ ℝ)
70 prmnn 16708 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
712, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
7271nnred 12279 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℝ)
7372resqcld 14162 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃↑2) ∈ ℝ)
74 zsqcl2 14175 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℕ0)
7512, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋↑2) ∈ ℕ0)
76 nn0addge2 12571 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑌↑2) ∈ ℝ ∧ (𝑋↑2) ∈ ℕ0) → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7769, 75, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7877, 44breqtrrd 5176 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ≤ 𝑃)
796zcnd 12721 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑃 ∈ ℂ)
8079exp1d 14178 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) = 𝑃)
817a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ∈ ℤ)
82 2z 12647 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℤ
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℤ)
84 prmuz2 16730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
852, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ∈ (ℤ‘2))
86 eluz2gt1 12960 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑃)
88 1lt2 12435 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 2)
90 ltexp2a 14203 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℝ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 < 𝑃 ∧ 1 < 2)) → (𝑃↑1) < (𝑃↑2))
9172, 81, 83, 87, 89, 90syl32anc 1377 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) < (𝑃↑2))
9280, 91eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 < (𝑃↑2))
9369, 72, 73, 78, 92lelttrd 11417 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌↑2) < (𝑃↑2))
9468, 93eqbrtrd 5170 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌)↑2) < (𝑃↑2))
9549abscld 15472 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘𝑌) ∈ ℝ)
9649absge0d 15480 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘𝑌))
9771nnnn0d 12585 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
9897nn0ge0d 12588 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑃)
9995, 72, 96, 98lt2sqd 14292 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ((abs‘𝑌)↑2) < (𝑃↑2)))
10094, 99mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) < 𝑃)
1016zred 12720 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℝ)
10295, 101ltnled 11406 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ¬ 𝑃 ≤ (abs‘𝑌)))
103100, 102mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 ≤ (abs‘𝑌))
104 sqnprm 16736 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℤ → ¬ (𝑋↑2) ∈ ℙ)
10512, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑋↑2) ∈ ℙ)
10649abs00ad 15326 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) = 0 ↔ 𝑌 = 0))
10744, 2eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + (𝑌↑2)) ∈ ℙ)
108 sq0i 14229 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌 = 0 → (𝑌↑2) = 0)
109108oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌 = 0 → ((𝑋↑2) + (𝑌↑2)) = ((𝑋↑2) + 0))
110109eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 = 0 → (((𝑋↑2) + (𝑌↑2)) ∈ ℙ ↔ ((𝑋↑2) + 0) ∈ ℙ))
111107, 110syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 = 0 → ((𝑋↑2) + 0) ∈ ℙ))
11238addridd 11459 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + 0) = (𝑋↑2))
113112eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑋↑2) + 0) ∈ ℙ ↔ (𝑋↑2) ∈ ℙ))
114111, 113sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌 = 0 → (𝑋↑2) ∈ ℙ))
115106, 114sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) = 0 → (𝑋↑2) ∈ ℙ))
116105, 115mtod 198 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (abs‘𝑌) = 0)
117 nn0abscl 15348 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ ℤ → (abs‘𝑌) ∈ ℕ0)
11819, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (abs‘𝑌) ∈ ℕ0)
119 elnn0 12526 . . . . . . . . . . . . . . . . . . . . 21 ((abs‘𝑌) ∈ ℕ0 ↔ ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
120118, 119sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
121120ord 864 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (¬ (abs‘𝑌) ∈ ℕ → (abs‘𝑌) = 0))
122116, 121mt3d 148 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) ∈ ℕ)
123 dvdsle 16344 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ (abs‘𝑌) ∈ ℕ) → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
1246, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
125103, 124mtod 198 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑃 ∥ (abs‘𝑌))
126 dvdsabsb 16310 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
1276, 19, 126syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
128125, 127mtbird 325 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑃𝑌)
129 coprm 16745 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑌 ∈ ℤ) → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
1302, 19, 129syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
131128, 130mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = 1)
132 2sqb.6 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
133131, 132eqtr3d 2777 . . . . . . . . . . . . 13 (𝜑 → 1 = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
13465, 62, 133mvrraddd 11673 . . . . . . . . . . . 12 (𝜑 → (1 − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
135134negeqd 11500 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = -(𝑃 · 𝐴))
13664, 135eqtr3d 2777 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) = -(𝑃 · 𝐴))
13761, 136breqtrrd 5176 . . . . . . . . 9 (𝜑𝑃 ∥ ((𝑌 · 𝐵) − 1))
13820peano2zd 12723 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) + 1) ∈ ℤ)
139 peano2zm 12658 . . . . . . . . . . 11 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵) − 1) ∈ ℤ)
14020, 139syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) ∈ ℤ)
141 dvdsmultr2 16332 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝑌 · 𝐵) + 1) ∈ ℤ ∧ ((𝑌 · 𝐵) − 1) ∈ ℤ) → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
1426, 138, 140, 141syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
143137, 142mpd 15 . . . . . . . 8 (𝜑𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
144 sq1 14231 . . . . . . . . . 10 (1↑2) = 1
145144oveq2i 7442 . . . . . . . . 9 (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵)↑2) − 1)
146 subsq 14246 . . . . . . . . . 10 (((𝑌 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
14762, 32, 146sylancl 586 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
148145, 147eqtr3id 2789 . . . . . . . 8 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
149143, 148breqtrrd 5176 . . . . . . 7 (𝜑𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))
150 dvdsadd2b 16340 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ ∧ ((((𝑌 · 𝐵)↑2) − 1) ∈ ℤ ∧ 𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))) → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
1516, 28, 24, 149, 150syl112anc 1373 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
15254, 151mpbird 257 . . . . 5 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1))
153 subneg 11556 . . . . . 6 ((((𝑋 · 𝐵)↑2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
15431, 32, 153sylancl 586 . . . . 5 (𝜑 → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
155152, 154breqtrrd 5176 . . . 4 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1))
156 oveq1 7438 . . . . . . 7 (𝑥 = (𝑋 · 𝐵) → (𝑥↑2) = ((𝑋 · 𝐵)↑2))
157156oveq1d 7446 . . . . . 6 (𝑥 = (𝑋 · 𝐵) → ((𝑥↑2) − -1) = (((𝑋 · 𝐵)↑2) − -1))
158157breq2d 5160 . . . . 5 (𝑥 = (𝑋 · 𝐵) → (𝑃 ∥ ((𝑥↑2) − -1) ↔ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)))
159158rspcev 3622 . . . 4 (((𝑋 · 𝐵) ∈ ℤ ∧ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
16014, 155, 159syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
161 neg1z 12651 . . . 4 -1 ∈ ℤ
162 eldifsn 4791 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1631, 162sylibr 234 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
164 lgsqr 27410 . . . 4 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
165161, 163, 164sylancr 587 . . 3 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
16610, 160, 165mpbir2and 713 . 2 (𝜑 → (-1 /L 𝑃) = 1)
167 m1lgs 27447 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
168163, 167syl 17 . 2 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
169166, 168mpbid 232 1 (𝜑 → (𝑃 mod 4) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cdif 3960  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491  cn 12264  2c2 12319  4c4 12321  0cn0 12524  cz 12611  cuz 12876   mod cmo 13906  cexp 14099  abscabs 15270  cdvds 16287   gcd cgcd 16528  cprime 16705   /L clgs 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-imas 17555  df-qus 17556  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-domn 20712  df-idom 20713  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evl1 22336  df-mdeg 26109  df-deg1 26110  df-mon1 26185  df-uc1p 26186  df-q1p 26187  df-r1p 26188  df-lgs 27354
This theorem is referenced by:  2sqb  27491
  Copyright terms: Public domain W3C validator