MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Structured version   Visualization version   GIF version

Theorem 2sqblem 25689
Description: Lemma for 2sqb 25690. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2sqb.2 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
2sqb.3 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
2sqb.4 (𝜑𝐴 ∈ ℤ)
2sqb.5 (𝜑𝐵 ∈ ℤ)
2sqb.6 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
Assertion
Ref Expression
2sqblem (𝜑 → (𝑃 mod 4) = 1)

Proof of Theorem 2sqblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
21simpld 495 . . . . 5 (𝜑𝑃 ∈ ℙ)
3 nprmdvds1 15879 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
42, 3syl 17 . . . 4 (𝜑 → ¬ 𝑃 ∥ 1)
5 prmz 15848 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
62, 5syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
7 1z 11861 . . . . 5 1 ∈ ℤ
8 dvdsnegb 15460 . . . . 5 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
96, 7, 8sylancl 586 . . . 4 (𝜑 → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
104, 9mtbid 325 . . 3 (𝜑 → ¬ 𝑃 ∥ -1)
11 2sqb.2 . . . . . 6 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
1211simpld 495 . . . . 5 (𝜑𝑋 ∈ ℤ)
13 2sqb.5 . . . . 5 (𝜑𝐵 ∈ ℤ)
1412, 13zmulcld 11942 . . . 4 (𝜑 → (𝑋 · 𝐵) ∈ ℤ)
15 zsqcl 13344 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
1613, 15syl 17 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℤ)
17 dvdsmul1 15464 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐵↑2)))
186, 16, 17syl2anc 584 . . . . . . 7 (𝜑𝑃 ∥ (𝑃 · (𝐵↑2)))
1911simprd 496 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℤ)
2019, 13zmulcld 11942 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℤ)
21 zsqcl 13344 . . . . . . . . . . . 12 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵)↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℤ)
23 peano2zm 11874 . . . . . . . . . . 11 (((𝑌 · 𝐵)↑2) ∈ ℤ → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2524zcnd 11937 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℂ)
26 zsqcl 13344 . . . . . . . . . . . 12 ((𝑋 · 𝐵) ∈ ℤ → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2714, 26syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2827peano2zd 11939 . . . . . . . . . 10 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ)
2928zcnd 11937 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℂ)
3025, 29addcomd 10689 . . . . . . . 8 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)))
3127zcnd 11937 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℂ)
32 ax-1cn 10441 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
3422zcnd 11937 . . . . . . . . 9 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℂ)
3531, 33, 34ppncand 10885 . . . . . . . 8 (𝜑 → ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)) = (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)))
36 zsqcl 13344 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℤ)
3712, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑋↑2) ∈ ℤ)
3837zcnd 11937 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
39 zsqcl 13344 . . . . . . . . . . . 12 (𝑌 ∈ ℤ → (𝑌↑2) ∈ ℤ)
4019, 39syl 17 . . . . . . . . . . 11 (𝜑 → (𝑌↑2) ∈ ℤ)
4140zcnd 11937 . . . . . . . . . 10 (𝜑 → (𝑌↑2) ∈ ℂ)
4216zcnd 11937 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
4338, 41, 42adddird 10512 . . . . . . . . 9 (𝜑 → (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
44 2sqb.3 . . . . . . . . . 10 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
4544oveq1d 7031 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐵↑2)) = (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)))
4612zcnd 11937 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4713zcnd 11937 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4846, 47sqmuld 13372 . . . . . . . . . 10 (𝜑 → ((𝑋 · 𝐵)↑2) = ((𝑋↑2) · (𝐵↑2)))
4919zcnd 11937 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
5049, 47sqmuld 13372 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵)↑2) = ((𝑌↑2) · (𝐵↑2)))
5148, 50oveq12d 7034 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
5243, 45, 513eqtr4rd 2842 . . . . . . . 8 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (𝑃 · (𝐵↑2)))
5330, 35, 523eqtrd 2835 . . . . . . 7 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = (𝑃 · (𝐵↑2)))
5418, 53breqtrrd 4990 . . . . . 6 (𝜑𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)))
55 2sqb.4 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
56 dvdsmul1 15464 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝐴))
576, 55, 56syl2anc 584 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃 · 𝐴))
586, 55zmulcld 11942 . . . . . . . . . . . 12 (𝜑 → (𝑃 · 𝐴) ∈ ℤ)
59 dvdsnegb 15460 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃 · 𝐴) ∈ ℤ) → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
606, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
6157, 60mpbid 233 . . . . . . . . . 10 (𝜑𝑃 ∥ -(𝑃 · 𝐴))
6220zcnd 11937 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℂ)
63 negsubdi2 10793 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑌 · 𝐵) ∈ ℂ) → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6432, 62, 63sylancr 587 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6558zcnd 11937 . . . . . . . . . . . . 13 (𝜑 → (𝑃 · 𝐴) ∈ ℂ)
6619zred 11936 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℝ)
67 absresq 14496 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ ℝ → ((abs‘𝑌)↑2) = (𝑌↑2))
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌)↑2) = (𝑌↑2))
6966resqcld 13461 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ∈ ℝ)
70 prmnn 15847 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
712, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ)
7271nnred 11501 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℝ)
7372resqcld 13461 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃↑2) ∈ ℝ)
74 zsqcl2 13352 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℕ0)
7512, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋↑2) ∈ ℕ0)
76 nn0addge2 11792 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑌↑2) ∈ ℝ ∧ (𝑋↑2) ∈ ℕ0) → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7769, 75, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7877, 44breqtrrd 4990 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) ≤ 𝑃)
796zcnd 11937 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑃 ∈ ℂ)
8079exp1d 13355 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) = 𝑃)
817a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ∈ ℤ)
82 2z 11863 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℤ
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℤ)
84 prmuz2 15869 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
852, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ∈ (ℤ‘2))
86 eluz2gt1 12169 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑃)
88 1lt2 11656 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 2)
90 ltexp2a 13380 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ ℝ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 < 𝑃 ∧ 1 < 2)) → (𝑃↑1) < (𝑃↑2))
9172, 81, 83, 87, 89, 90syl32anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑1) < (𝑃↑2))
9280, 91eqbrtrrd 4986 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 < (𝑃↑2))
9369, 72, 73, 78, 92lelttrd 10645 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌↑2) < (𝑃↑2))
9468, 93eqbrtrd 4984 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌)↑2) < (𝑃↑2))
9549abscld 14630 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘𝑌) ∈ ℝ)
9649absge0d 14638 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘𝑌))
9771nnnn0d 11803 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
9897nn0ge0d 11806 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑃)
9995, 72, 96, 98lt2sqd 13469 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ((abs‘𝑌)↑2) < (𝑃↑2)))
10094, 99mpbird 258 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) < 𝑃)
1016zred 11936 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℝ)
10295, 101ltnled 10634 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ¬ 𝑃 ≤ (abs‘𝑌)))
103100, 102mpbid 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 ≤ (abs‘𝑌))
104 sqnprm 15875 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℤ → ¬ (𝑋↑2) ∈ ℙ)
10512, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑋↑2) ∈ ℙ)
10649abs00ad 14484 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) = 0 ↔ 𝑌 = 0))
10744, 2eqeltrrd 2884 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + (𝑌↑2)) ∈ ℙ)
108 sq0i 13406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌 = 0 → (𝑌↑2) = 0)
109108oveq2d 7032 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌 = 0 → ((𝑋↑2) + (𝑌↑2)) = ((𝑋↑2) + 0))
110109eleq1d 2867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 = 0 → (((𝑋↑2) + (𝑌↑2)) ∈ ℙ ↔ ((𝑋↑2) + 0) ∈ ℙ))
111107, 110syl5ibcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 = 0 → ((𝑋↑2) + 0) ∈ ℙ))
11238addid1d 10687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + 0) = (𝑋↑2))
113112eleq1d 2867 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑋↑2) + 0) ∈ ℙ ↔ (𝑋↑2) ∈ ℙ))
114111, 113sylibd 240 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌 = 0 → (𝑋↑2) ∈ ℙ))
115106, 114sylbid 241 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) = 0 → (𝑋↑2) ∈ ℙ))
116105, 115mtod 199 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (abs‘𝑌) = 0)
117 nn0abscl 14506 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ ℤ → (abs‘𝑌) ∈ ℕ0)
11819, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (abs‘𝑌) ∈ ℕ0)
119 elnn0 11747 . . . . . . . . . . . . . . . . . . . . 21 ((abs‘𝑌) ∈ ℕ0 ↔ ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
120118, 119sylib 219 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
121120ord 859 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (¬ (abs‘𝑌) ∈ ℕ → (abs‘𝑌) = 0))
122116, 121mt3d 150 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝑌) ∈ ℕ)
123 dvdsle 15493 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ (abs‘𝑌) ∈ ℕ) → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
1246, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
125103, 124mtod 199 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑃 ∥ (abs‘𝑌))
126 dvdsabsb 15462 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
1276, 19, 126syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
128125, 127mtbird 326 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑃𝑌)
129 coprm 15884 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑌 ∈ ℤ) → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
1302, 19, 129syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
131128, 130mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = 1)
132 2sqb.6 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
133131, 132eqtr3d 2833 . . . . . . . . . . . . 13 (𝜑 → 1 = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
13465, 62, 133mvrraddd 10900 . . . . . . . . . . . 12 (𝜑 → (1 − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
135134negeqd 10727 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = -(𝑃 · 𝐴))
13664, 135eqtr3d 2833 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) = -(𝑃 · 𝐴))
13761, 136breqtrrd 4990 . . . . . . . . 9 (𝜑𝑃 ∥ ((𝑌 · 𝐵) − 1))
13820peano2zd 11939 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) + 1) ∈ ℤ)
139 peano2zm 11874 . . . . . . . . . . 11 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵) − 1) ∈ ℤ)
14020, 139syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) ∈ ℤ)
141 dvdsmultr2 15482 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝑌 · 𝐵) + 1) ∈ ℤ ∧ ((𝑌 · 𝐵) − 1) ∈ ℤ) → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
1426, 138, 140, 141syl3anc 1364 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
143137, 142mpd 15 . . . . . . . 8 (𝜑𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
144 sq1 13408 . . . . . . . . . 10 (1↑2) = 1
145144oveq2i 7027 . . . . . . . . 9 (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵)↑2) − 1)
146 subsq 13422 . . . . . . . . . 10 (((𝑌 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
14762, 32, 146sylancl 586 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
148145, 147syl5eqr 2845 . . . . . . . 8 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
149143, 148breqtrrd 4990 . . . . . . 7 (𝜑𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))
150 dvdsadd2b 15489 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ ∧ ((((𝑌 · 𝐵)↑2) − 1) ∈ ℤ ∧ 𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))) → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
1516, 28, 24, 149, 150syl112anc 1367 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
15254, 151mpbird 258 . . . . 5 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1))
153 subneg 10783 . . . . . 6 ((((𝑋 · 𝐵)↑2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
15431, 32, 153sylancl 586 . . . . 5 (𝜑 → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
155152, 154breqtrrd 4990 . . . 4 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1))
156 oveq1 7023 . . . . . . 7 (𝑥 = (𝑋 · 𝐵) → (𝑥↑2) = ((𝑋 · 𝐵)↑2))
157156oveq1d 7031 . . . . . 6 (𝑥 = (𝑋 · 𝐵) → ((𝑥↑2) − -1) = (((𝑋 · 𝐵)↑2) − -1))
158157breq2d 4974 . . . . 5 (𝑥 = (𝑋 · 𝐵) → (𝑃 ∥ ((𝑥↑2) − -1) ↔ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)))
159158rspcev 3559 . . . 4 (((𝑋 · 𝐵) ∈ ℤ ∧ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
16014, 155, 159syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
161 neg1z 11867 . . . 4 -1 ∈ ℤ
162 eldifsn 4626 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1631, 162sylibr 235 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
164 lgsqr 25609 . . . 4 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
165161, 163, 164sylancr 587 . . 3 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
16610, 160, 165mpbir2and 709 . 2 (𝜑 → (-1 /L 𝑃) = 1)
167 m1lgs 25646 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
168163, 167syl 17 . 2 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
169166, 168mpbid 233 1 (𝜑 → (𝑃 mod 4) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984  wrex 3106  cdif 3856  {csn 4472   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  cmin 10717  -cneg 10718  cn 11486  2c2 11540  4c4 11542  0cn0 11745  cz 11829  cuz 12093   mod cmo 13087  cexp 13279  abscabs 14427  cdvds 15440   gcd cgcd 15676  cprime 15844   /L clgs 25552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-ofr 7268  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-ec 8141  df-qs 8145  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-dvds 15441  df-gcd 15677  df-prm 15845  df-phi 15932  df-pc 16003  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-0g 16544  df-gsum 16545  df-prds 16550  df-pws 16552  df-imas 16610  df-qus 16611  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-nsg 18031  df-eqg 18032  df-ghm 18097  df-cntz 18188  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-srg 18946  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-rnghom 19157  df-drng 19194  df-field 19195  df-subrg 19223  df-lmod 19326  df-lss 19394  df-lsp 19434  df-sra 19634  df-rgmod 19635  df-lidl 19636  df-rsp 19637  df-2idl 19694  df-nzr 19720  df-rlreg 19745  df-domn 19746  df-idom 19747  df-assa 19774  df-asp 19775  df-ascl 19776  df-psr 19824  df-mvr 19825  df-mpl 19826  df-opsr 19828  df-evls 19973  df-evl 19974  df-psr1 20031  df-vr1 20032  df-ply1 20033  df-coe1 20034  df-evl1 20162  df-cnfld 20228  df-zring 20300  df-zrh 20333  df-zn 20336  df-mdeg 24332  df-deg1 24333  df-mon1 24407  df-uc1p 24408  df-q1p 24409  df-r1p 24410  df-lgs 25553
This theorem is referenced by:  2sqb  25690
  Copyright terms: Public domain W3C validator