MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem4 Structured version   Visualization version   GIF version

Theorem vitalilem4 24680
Description: Lemma for vitali 24682. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem4 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
21oveq2d 7271 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
32eleq1d 2823 . . . . . . 7 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
43rabbidv 3404 . . . . . 6 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
5 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
6 reex 10893 . . . . . . 7 ℝ ∈ V
76rabex 5251 . . . . . 6 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
84, 5, 7fvmpt 6857 . . . . 5 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
98adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
109fveq2d 6760 . . 3 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
11 vitali.1 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
12 vitali.2 . . . . . . . 8 𝑆 = ((0[,]1) / )
13 vitali.3 . . . . . . . 8 (𝜑𝐹 Fn 𝑆)
14 vitali.4 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
15 vitali.5 . . . . . . . 8 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
16 vitali.7 . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
1711, 12, 13, 14, 15, 5, 16vitalilem2 24678 . . . . . . 7 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
1817simp1d 1140 . . . . . 6 (𝜑 → ran 𝐹 ⊆ (0[,]1))
19 unitssre 13160 . . . . . 6 (0[,]1) ⊆ ℝ
2018, 19sstrdi 3929 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
2120adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → ran 𝐹 ⊆ ℝ)
22 neg1rr 12018 . . . . . 6 -1 ∈ ℝ
23 1re 10906 . . . . . 6 1 ∈ ℝ
24 iccssre 13090 . . . . . 6 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
2522, 23, 24mp2an 688 . . . . 5 (-1[,]1) ⊆ ℝ
26 f1of 6700 . . . . . . . 8 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2715, 26syl 17 . . . . . . 7 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2827ffvelrnda 6943 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (ℚ ∩ (-1[,]1)))
2928elin2d 4129 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (-1[,]1))
3025, 29sselid 3915 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
31 eqidd 2739 . . . 4 ((𝜑𝑚 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
3221, 30, 31ovolshft 24580 . . 3 ((𝜑𝑚 ∈ ℕ) → (vol*‘ran 𝐹) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
3310, 32eqtr4d 2781 . 2 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = (vol*‘ran 𝐹))
34 3re 11983 . . . . . . . 8 3 ∈ ℝ
3534rexri 10964 . . . . . . 7 3 ∈ ℝ*
3635a1i 11 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 ∈ ℝ*)
37 3rp 12665 . . . . . . . . . . . . 13 3 ∈ ℝ+
38 0re 10908 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
39 0le1 11428 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
40 ovolicc 24592 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
4138, 23, 39, 40mp3an 1459 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]1)) = (1 − 0)
42 1m0e1 12024 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
4341, 42eqtri 2766 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]1)) = 1
4443, 23eqeltri 2835 . . . . . . . . . . . . . . . . 17 (vol*‘(0[,]1)) ∈ ℝ
45 ovolsscl 24555 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℝ ∧ (vol*‘(0[,]1)) ∈ ℝ) → (vol*‘ran 𝐹) ∈ ℝ)
4619, 44, 45mp3an23 1451 . . . . . . . . . . . . . . . 16 (ran 𝐹 ⊆ (0[,]1) → (vol*‘ran 𝐹) ∈ ℝ)
4718, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (vol*‘ran 𝐹) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 0 < (vol*‘ran 𝐹))
5048, 49elrpd 12698 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℝ+)
51 rpdivcl 12684 . . . . . . . . . . . . 13 ((3 ∈ ℝ+ ∧ (vol*‘ran 𝐹) ∈ ℝ+) → (3 / (vol*‘ran 𝐹)) ∈ ℝ+)
5237, 50, 51sylancr 586 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) ∈ ℝ+)
5352rpred 12701 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) ∈ ℝ)
5452rpge0d 12705 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 0 ≤ (3 / (vol*‘ran 𝐹)))
55 flge0nn0 13468 . . . . . . . . . . 11 (((3 / (vol*‘ran 𝐹)) ∈ ℝ ∧ 0 ≤ (3 / (vol*‘ran 𝐹))) → (⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0)
5653, 54, 55syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0)
57 nn0p1nn 12202 . . . . . . . . . 10 ((⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0 → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ)
5856, 57syl 17 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ)
5958nnred 11918 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℝ)
6059, 48remulcld 10936 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ℝ)
6160rexrd 10956 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ℝ*)
626elpw2 5264 . . . . . . . . . . . . . . . . . 18 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
6320, 62sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
6463anim1i 614 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
65 eldif 3893 . . . . . . . . . . . . . . . 16 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
6664, 65sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
6766ex 412 . . . . . . . . . . . . . 14 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
6816, 67mt3d 148 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ∈ dom vol)
69 inss1 4159 . . . . . . . . . . . . . . . 16 (ℚ ∩ (-1[,]1)) ⊆ ℚ
70 qssre 12628 . . . . . . . . . . . . . . . 16 ℚ ⊆ ℝ
7169, 70sstri 3926 . . . . . . . . . . . . . . 15 (ℚ ∩ (-1[,]1)) ⊆ ℝ
72 fss 6601 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
7327, 71, 72sylancl 585 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶ℝ)
7473ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
75 shftmbl 24607 . . . . . . . . . . . . 13 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
7668, 74, 75syl2an2r 681 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
7776, 5fmptd 6970 . . . . . . . . . . 11 (𝜑𝑇:ℕ⟶dom vol)
7877ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
7978ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
80 iunmbl 24622 . . . . . . . . 9 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
8179, 80syl 17 . . . . . . . 8 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
82 mblss 24600 . . . . . . . 8 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
83 ovolcl 24547 . . . . . . . 8 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
8481, 82, 833syl 18 . . . . . . 7 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
8584adantr 480 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
86 flltp1 13448 . . . . . . . 8 ((3 / (vol*‘ran 𝐹)) ∈ ℝ → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1))
8753, 86syl 17 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1))
8834a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 ∈ ℝ)
8988, 59, 50ltdivmul2d 12753 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ↔ 3 < (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))))
9087, 89mpbid 231 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 < (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
91 nnuz 12550 . . . . . . . . . . 11 ℕ = (ℤ‘1)
92 1zzd 12281 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 1 ∈ ℤ)
93 mblvol 24599 . . . . . . . . . . . . . . . . 17 ((𝑇𝑚) ∈ dom vol → (vol‘(𝑇𝑚)) = (vol*‘(𝑇𝑚)))
9478, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘(𝑇𝑚)))
9594, 33eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘ran 𝐹))
9647adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (vol*‘ran 𝐹) ∈ ℝ)
9795, 96eqeltrd 2839 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) ∈ ℝ)
9897adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) ∈ ℝ)
99 eqid 2738 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))
10098, 99fmptd 6970 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))):ℕ⟶ℝ)
101100ffvelrnda 6943 . . . . . . . . . . 11 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))‘𝑘) ∈ ℝ)
10291, 92, 101serfre 13680 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))):ℕ⟶ℝ)
103102frnd 6592 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ)
104 ressxr 10950 . . . . . . . . 9 ℝ ⊆ ℝ*
105103, 104sstrdi 3929 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ*)
10695adantlr 711 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘ran 𝐹))
107106mpteq2dva 5170 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹)))
108 fconstmpt 5640 . . . . . . . . . . . . 13 (ℕ × {(vol*‘ran 𝐹)}) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹))
109107, 108eqtr4di 2797 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (ℕ × {(vol*‘ran 𝐹)}))
110109seqeq3d 13657 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) = seq1( + , (ℕ × {(vol*‘ran 𝐹)})))
111110fveq1d 6758 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)))
11248recnd 10934 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℂ)
113 ser1const 13707 . . . . . . . . . . 11 (((vol*‘ran 𝐹) ∈ ℂ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
114112, 58, 113syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
115111, 114eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
116102ffnd 6585 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) Fn ℕ)
117 fnfvelrn 6940 . . . . . . . . . 10 ((seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) Fn ℕ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
118116, 58, 117syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
119115, 118eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
120 supxrub 12987 . . . . . . . 8 ((ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ* ∧ (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
121105, 119, 120syl2anc 583 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
12281adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
123 mblvol 24599 . . . . . . . . 9 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
124122, 123syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
12578, 97jca 511 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ))
126125ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ))
12711, 12, 13, 14, 15, 5, 16vitalilem3 24679 . . . . . . . . . 10 (𝜑Disj 𝑚 ∈ ℕ (𝑇𝑚))
128127adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → Disj 𝑚 ∈ ℕ (𝑇𝑚))
129 eqid 2738 . . . . . . . . . 10 seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))
130129, 99voliun 24623 . . . . . . . . 9 ((∀𝑚 ∈ ℕ ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ) ∧ Disj 𝑚 ∈ ℕ (𝑇𝑚)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
131126, 128, 130syl2an2r 681 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
132124, 131eqtr3d 2780 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
133121, 132breqtrrd 5098 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
13436, 61, 85, 90, 133xrltletrd 12824 . . . . 5 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
13517simp3d 1142 . . . . . . . . 9 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
136135adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
137 2re 11977 . . . . . . . . 9 2 ∈ ℝ
138 iccssre 13090 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 2 ∈ ℝ) → (-1[,]2) ⊆ ℝ)
13922, 137, 138mp2an 688 . . . . . . . 8 (-1[,]2) ⊆ ℝ
140 ovolss 24554 . . . . . . . 8 (( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2) ∧ (-1[,]2) ⊆ ℝ) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ (vol*‘(-1[,]2)))
141136, 139, 140sylancl 585 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ (vol*‘(-1[,]2)))
142 2cn 11978 . . . . . . . . 9 2 ∈ ℂ
143 ax-1cn 10860 . . . . . . . . 9 1 ∈ ℂ
144142, 143subnegi 11230 . . . . . . . 8 (2 − -1) = (2 + 1)
145 neg1lt0 12020 . . . . . . . . . . 11 -1 < 0
146 2pos 12006 . . . . . . . . . . 11 0 < 2
14722, 38, 137lttri 11031 . . . . . . . . . . 11 ((-1 < 0 ∧ 0 < 2) → -1 < 2)
148145, 146, 147mp2an 688 . . . . . . . . . 10 -1 < 2
14922, 137, 148ltleii 11028 . . . . . . . . 9 -1 ≤ 2
150 ovolicc 24592 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 2 ∈ ℝ ∧ -1 ≤ 2) → (vol*‘(-1[,]2)) = (2 − -1))
15122, 137, 149, 150mp3an 1459 . . . . . . . 8 (vol*‘(-1[,]2)) = (2 − -1)
152 df-3 11967 . . . . . . . 8 3 = (2 + 1)
153144, 151, 1523eqtr4i 2776 . . . . . . 7 (vol*‘(-1[,]2)) = 3
154141, 153breqtrdi 5111 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3)
155 xrlenlt 10971 . . . . . . 7 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 3 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3 ↔ ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚))))
15685, 35, 155sylancl 585 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3 ↔ ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚))))
157154, 156mpbid 231 . . . . 5 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
158134, 157pm2.65da 813 . . . 4 (𝜑 → ¬ 0 < (vol*‘ran 𝐹))
159 ovolge0 24550 . . . . . . 7 (ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ran 𝐹))
16020, 159syl 17 . . . . . 6 (𝜑 → 0 ≤ (vol*‘ran 𝐹))
161 0xr 10953 . . . . . . 7 0 ∈ ℝ*
162 ovolcl 24547 . . . . . . . 8 (ran 𝐹 ⊆ ℝ → (vol*‘ran 𝐹) ∈ ℝ*)
16320, 162syl 17 . . . . . . 7 (𝜑 → (vol*‘ran 𝐹) ∈ ℝ*)
164 xrleloe 12807 . . . . . . 7 ((0 ∈ ℝ* ∧ (vol*‘ran 𝐹) ∈ ℝ*) → (0 ≤ (vol*‘ran 𝐹) ↔ (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹))))
165161, 163, 164sylancr 586 . . . . . 6 (𝜑 → (0 ≤ (vol*‘ran 𝐹) ↔ (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹))))
166160, 165mpbid 231 . . . . 5 (𝜑 → (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹)))
167166ord 860 . . . 4 (𝜑 → (¬ 0 < (vol*‘ran 𝐹) → 0 = (vol*‘ran 𝐹)))
168158, 167mpd 15 . . 3 (𝜑 → 0 = (vol*‘ran 𝐹))
169168adantr 480 . 2 ((𝜑𝑚 ∈ ℕ) → 0 = (vol*‘ran 𝐹))
17033, 169eqtr4d 2781 1 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  cdif 3880  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   ciun 4921  Disj wdisj 5035   class class class wbr 5070  {copab 5132  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255   / cqs 8455  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cq 12617  +crp 12659  [,]cicc 13011  cfl 13438  seqcseq 13649  vol*covol 24531  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534
This theorem is referenced by:  vitalilem5  24681
  Copyright terms: Public domain W3C validator