Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝐺‘𝑛) = (𝐺‘𝑚)) |
2 | 1 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑚))) |
3 | 2 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
4 | 3 | rabbidv 3414 |
. . . . . 6
⊢ (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
5 | | vitali.6 |
. . . . . 6
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) |
6 | | reex 10962 |
. . . . . . 7
⊢ ℝ
∈ V |
7 | 6 | rabex 5256 |
. . . . . 6
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ∈ V |
8 | 4, 5, 7 | fvmpt 6875 |
. . . . 5
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
9 | 8 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
10 | 9 | fveq2d 6778 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑇‘𝑚)) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹})) |
11 | | vitali.1 |
. . . . . . . 8
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} |
12 | | vitali.2 |
. . . . . . . 8
⊢ 𝑆 = ((0[,]1) / ∼
) |
13 | | vitali.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝑆) |
14 | | vitali.4 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
15 | | vitali.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
16 | | vitali.7 |
. . . . . . . 8
⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ
∖ dom vol)) |
17 | 11, 12, 13, 14, 15, 5, 16 | vitalilem2 24773 |
. . . . . . 7
⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆
∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) |
18 | 17 | simp1d 1141 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ (0[,]1)) |
19 | | unitssre 13231 |
. . . . . 6
⊢ (0[,]1)
⊆ ℝ |
20 | 18, 19 | sstrdi 3933 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
21 | 20 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ran 𝐹 ⊆ ℝ) |
22 | | neg1rr 12088 |
. . . . . 6
⊢ -1 ∈
ℝ |
23 | | 1re 10975 |
. . . . . 6
⊢ 1 ∈
ℝ |
24 | | iccssre 13161 |
. . . . . 6
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆
ℝ) |
25 | 22, 23, 24 | mp2an 689 |
. . . . 5
⊢ (-1[,]1)
⊆ ℝ |
26 | | f1of 6716 |
. . . . . . . 8
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
27 | 15, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
28 | 27 | ffvelrnda 6961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ (ℚ ∩
(-1[,]1))) |
29 | 28 | elin2d 4133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ (-1[,]1)) |
30 | 25, 29 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ ℝ) |
31 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
32 | 21, 30, 31 | ovolshft 24675 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘ran 𝐹) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹})) |
33 | 10, 32 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑇‘𝑚)) = (vol*‘ran 𝐹)) |
34 | | 3re 12053 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
35 | 34 | rexri 11033 |
. . . . . . 7
⊢ 3 ∈
ℝ* |
36 | 35 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 3 ∈
ℝ*) |
37 | | 3rp 12736 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℝ+ |
38 | | 0re 10977 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ |
39 | | 0le1 11498 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ≤
1 |
40 | | ovolicc 24687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) →
(vol*‘(0[,]1)) = (1 − 0)) |
41 | 38, 23, 39, 40 | mp3an 1460 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘(0[,]1)) = (1 − 0) |
42 | | 1m0e1 12094 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
− 0) = 1 |
43 | 41, 42 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol*‘(0[,]1)) = 1 |
44 | 43, 23 | eqeltri 2835 |
. . . . . . . . . . . . . . . . 17
⊢
(vol*‘(0[,]1)) ∈ ℝ |
45 | | ovolsscl 24650 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 ⊆ (0[,]1) ∧
(0[,]1) ⊆ ℝ ∧ (vol*‘(0[,]1)) ∈ ℝ) →
(vol*‘ran 𝐹) ∈
ℝ) |
46 | 19, 44, 45 | mp3an23 1452 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝐹 ⊆ (0[,]1) →
(vol*‘ran 𝐹) ∈
ℝ) |
47 | 18, 46 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (vol*‘ran 𝐹) ∈
ℝ) |
48 | 47 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (vol*‘ran
𝐹) ∈
ℝ) |
49 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 0 <
(vol*‘ran 𝐹)) |
50 | 48, 49 | elrpd 12769 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (vol*‘ran
𝐹) ∈
ℝ+) |
51 | | rpdivcl 12755 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℝ+ ∧ (vol*‘ran 𝐹) ∈ ℝ+) → (3 /
(vol*‘ran 𝐹)) ∈
ℝ+) |
52 | 37, 50, 51 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (3 /
(vol*‘ran 𝐹)) ∈
ℝ+) |
53 | 52 | rpred 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (3 /
(vol*‘ran 𝐹)) ∈
ℝ) |
54 | 52 | rpge0d 12776 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 0 ≤ (3 /
(vol*‘ran 𝐹))) |
55 | | flge0nn0 13540 |
. . . . . . . . . . 11
⊢ (((3 /
(vol*‘ran 𝐹)) ∈
ℝ ∧ 0 ≤ (3 / (vol*‘ran 𝐹))) → (⌊‘(3 /
(vol*‘ran 𝐹))) ∈
ℕ0) |
56 | 53, 54, 55 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(⌊‘(3 / (vol*‘ran 𝐹))) ∈
ℕ0) |
57 | | nn0p1nn 12272 |
. . . . . . . . . 10
⊢
((⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0 →
((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) |
58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) |
59 | 58 | nnred 11988 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℝ) |
60 | 59, 48 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈
ℝ) |
61 | 60 | rexrd 11025 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈
ℝ*) |
62 | 6 | elpw2 5269 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
𝐹 ∈ 𝒫 ℝ
↔ ran 𝐹 ⊆
ℝ) |
63 | 20, 62 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐹 ∈ 𝒫 ℝ) |
64 | 63 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧
¬ ran 𝐹 ∈ dom
vol)) |
65 | | eldif 3897 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝐹 ∈ (𝒫 ℝ
∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran
𝐹 ∈ dom
vol)) |
66 | 64, 65 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ
∖ dom vol)) |
67 | 66 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ
∖ dom vol))) |
68 | 16, 67 | mt3d 148 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐹 ∈ dom vol) |
69 | | inss1 4162 |
. . . . . . . . . . . . . . . 16
⊢ (ℚ
∩ (-1[,]1)) ⊆ ℚ |
70 | | qssre 12699 |
. . . . . . . . . . . . . . . 16
⊢ ℚ
⊆ ℝ |
71 | 69, 70 | sstri 3930 |
. . . . . . . . . . . . . . 15
⊢ (ℚ
∩ (-1[,]1)) ⊆ ℝ |
72 | | fss 6617 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:ℕ⟶(ℚ ∩
(-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ) |
73 | 27, 71, 72 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:ℕ⟶ℝ) |
74 | 73 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℝ) |
75 | | shftmbl 24702 |
. . . . . . . . . . . . 13
⊢ ((ran
𝐹 ∈ dom vol ∧
(𝐺‘𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} ∈ dom vol) |
76 | 68, 74, 75 | syl2an2r 682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} ∈ dom vol) |
77 | 76, 5 | fmptd 6988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:ℕ⟶dom vol) |
78 | 77 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑇‘𝑚) ∈ dom vol) |
79 | 78 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ ℕ (𝑇‘𝑚) ∈ dom vol) |
80 | | iunmbl 24717 |
. . . . . . . . 9
⊢
(∀𝑚 ∈
ℕ (𝑇‘𝑚) ∈ dom vol → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∈ dom vol) |
81 | 79, 80 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∈ dom vol) |
82 | | mblss 24695 |
. . . . . . . 8
⊢ (∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∈ dom vol → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ ℝ) |
83 | | ovolcl 24642 |
. . . . . . . 8
⊢ (∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ ℝ → (vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ∈
ℝ*) |
84 | 81, 82, 83 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ∈
ℝ*) |
85 | 84 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ∈
ℝ*) |
86 | | flltp1 13520 |
. . . . . . . 8
⊢ ((3 /
(vol*‘ran 𝐹)) ∈
ℝ → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran
𝐹))) + 1)) |
87 | 53, 86 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (3 /
(vol*‘ran 𝐹)) <
((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) |
88 | 34 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 3 ∈
ℝ) |
89 | 88, 59, 50 | ltdivmul2d 12824 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → ((3 /
(vol*‘ran 𝐹)) <
((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ↔ 3 < (((⌊‘(3 /
(vol*‘ran 𝐹))) + 1)
· (vol*‘ran 𝐹)))) |
90 | 87, 89 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 3 <
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))) |
91 | | nnuz 12621 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
92 | | 1zzd 12351 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 1 ∈
ℤ) |
93 | | mblvol 24694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇‘𝑚) ∈ dom vol → (vol‘(𝑇‘𝑚)) = (vol*‘(𝑇‘𝑚))) |
94 | 78, 93 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇‘𝑚)) = (vol*‘(𝑇‘𝑚))) |
95 | 94, 33 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇‘𝑚)) = (vol*‘ran 𝐹)) |
96 | 47 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘ran 𝐹) ∈
ℝ) |
97 | 95, 96 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇‘𝑚)) ∈ ℝ) |
98 | 97 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < (vol*‘ran
𝐹)) ∧ 𝑚 ∈ ℕ) →
(vol‘(𝑇‘𝑚)) ∈
ℝ) |
99 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))) = (𝑚 ∈ ℕ ↦ (vol‘(𝑇‘𝑚))) |
100 | 98, 99 | fmptd 6988 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))):ℕ⟶ℝ) |
101 | 100 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 < (vol*‘ran
𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))‘𝑘) ∈ ℝ) |
102 | 91, 92, 101 | serfre 13752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))):ℕ⟶ℝ) |
103 | 102 | frnd 6608 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → ran seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) ⊆
ℝ) |
104 | | ressxr 11019 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
105 | 103, 104 | sstrdi 3933 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → ran seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) ⊆
ℝ*) |
106 | 95 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 0 < (vol*‘ran
𝐹)) ∧ 𝑚 ∈ ℕ) →
(vol‘(𝑇‘𝑚)) = (vol*‘ran 𝐹)) |
107 | 106 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹))) |
108 | | fconstmpt 5649 |
. . . . . . . . . . . . 13
⊢ (ℕ
× {(vol*‘ran 𝐹)}) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹)) |
109 | 107, 108 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))) = (ℕ ×
{(vol*‘ran 𝐹)})) |
110 | 109 | seqeq3d 13729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) = seq1( + , (ℕ
× {(vol*‘ran 𝐹)}))) |
111 | 110 | fveq1d 6776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))))‘((⌊‘(3 /
(vol*‘ran 𝐹))) + 1))
= (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 /
(vol*‘ran 𝐹))) +
1))) |
112 | 48 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (vol*‘ran
𝐹) ∈
ℂ) |
113 | | ser1const 13779 |
. . . . . . . . . . 11
⊢
(((vol*‘ran 𝐹)
∈ ℂ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + ,
(ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 /
(vol*‘ran 𝐹))) + 1))
= (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))) |
114 | 112, 58, 113 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (seq1( + ,
(ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 /
(vol*‘ran 𝐹))) + 1))
= (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))) |
115 | 111, 114 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))))‘((⌊‘(3 /
(vol*‘ran 𝐹))) + 1))
= (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))) |
116 | 102 | ffnd 6601 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) Fn
ℕ) |
117 | | fnfvelrn 6958 |
. . . . . . . . . 10
⊢ ((seq1( +
, (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) Fn ℕ ∧
((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))))‘((⌊‘(3 /
(vol*‘ran 𝐹))) + 1))
∈ ran seq1( + , (𝑚
∈ ℕ ↦ (vol‘(𝑇‘𝑚))))) |
118 | 116, 58, 117 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → (seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))))‘((⌊‘(3 /
(vol*‘ran 𝐹))) + 1))
∈ ran seq1( + , (𝑚
∈ ℕ ↦ (vol‘(𝑇‘𝑚))))) |
119 | 115, 118 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))))) |
120 | | supxrub 13058 |
. . . . . . . 8
⊢ ((ran
seq1( + , (𝑚 ∈ ℕ
↦ (vol‘(𝑇‘𝑚)))) ⊆ ℝ* ∧
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚))))) → (((⌊‘(3
/ (vol*‘ran 𝐹))) + 1)
· (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))), ℝ*, <
)) |
121 | 105, 119,
120 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))), ℝ*, <
)) |
122 | 81 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∈ dom vol) |
123 | | mblvol 24694 |
. . . . . . . . 9
⊢ (∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∈ dom vol → (vol‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) = (vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚))) |
124 | 122, 123 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(vol‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) = (vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚))) |
125 | 78, 97 | jca 512 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑇‘𝑚) ∈ dom vol ∧ (vol‘(𝑇‘𝑚)) ∈ ℝ)) |
126 | 125 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ ℕ ((𝑇‘𝑚) ∈ dom vol ∧ (vol‘(𝑇‘𝑚)) ∈ ℝ)) |
127 | 11, 12, 13, 14, 15, 5, 16 | vitalilem3 24774 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑚 ∈ ℕ (𝑇‘𝑚)) |
128 | 127 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → Disj
𝑚 ∈ ℕ (𝑇‘𝑚)) |
129 | | eqid 2738 |
. . . . . . . . . 10
⊢ seq1( + ,
(𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦
(vol‘(𝑇‘𝑚)))) |
130 | 129, 99 | voliun 24718 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
ℕ ((𝑇‘𝑚) ∈ dom vol ∧
(vol‘(𝑇‘𝑚)) ∈ ℝ) ∧
Disj 𝑚 ∈
ℕ (𝑇‘𝑚)) → (vol‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇‘𝑚)))), ℝ*, <
)) |
131 | 126, 128,
130 | syl2an2r 682 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(vol‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇‘𝑚)))), ℝ*, <
)) |
132 | 124, 131 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇‘𝑚)))), ℝ*, <
)) |
133 | 121, 132 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ (vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚))) |
134 | 36, 61, 85, 90, 133 | xrltletrd 12895 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → 3 <
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚))) |
135 | 17 | simp3d 1143 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2)) |
136 | 135 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2)) |
137 | | 2re 12047 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
138 | | iccssre 13161 |
. . . . . . . . 9
⊢ ((-1
∈ ℝ ∧ 2 ∈ ℝ) → (-1[,]2) ⊆
ℝ) |
139 | 22, 137, 138 | mp2an 689 |
. . . . . . . 8
⊢ (-1[,]2)
⊆ ℝ |
140 | | ovolss 24649 |
. . . . . . . 8
⊢
((∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2) ∧ (-1[,]2) ⊆
ℝ) → (vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ≤
(vol*‘(-1[,]2))) |
141 | 136, 139,
140 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ≤
(vol*‘(-1[,]2))) |
142 | | 2cn 12048 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
143 | | ax-1cn 10929 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
144 | 142, 143 | subnegi 11300 |
. . . . . . . 8
⊢ (2
− -1) = (2 + 1) |
145 | | neg1lt0 12090 |
. . . . . . . . . . 11
⊢ -1 <
0 |
146 | | 2pos 12076 |
. . . . . . . . . . 11
⊢ 0 <
2 |
147 | 22, 38, 137 | lttri 11101 |
. . . . . . . . . . 11
⊢ ((-1 <
0 ∧ 0 < 2) → -1 < 2) |
148 | 145, 146,
147 | mp2an 689 |
. . . . . . . . . 10
⊢ -1 <
2 |
149 | 22, 137, 148 | ltleii 11098 |
. . . . . . . . 9
⊢ -1 ≤
2 |
150 | | ovolicc 24687 |
. . . . . . . . 9
⊢ ((-1
∈ ℝ ∧ 2 ∈ ℝ ∧ -1 ≤ 2) →
(vol*‘(-1[,]2)) = (2 − -1)) |
151 | 22, 137, 149, 150 | mp3an 1460 |
. . . . . . . 8
⊢
(vol*‘(-1[,]2)) = (2 − -1) |
152 | | df-3 12037 |
. . . . . . . 8
⊢ 3 = (2 +
1) |
153 | 144, 151,
152 | 3eqtr4i 2776 |
. . . . . . 7
⊢
(vol*‘(-1[,]2)) = 3 |
154 | 141, 153 | breqtrdi 5115 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ≤ 3) |
155 | | xrlenlt 11040 |
. . . . . . 7
⊢
(((vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ∈ ℝ* ∧ 3 ∈
ℝ*) → ((vol*‘∪
𝑚 ∈ ℕ (𝑇‘𝑚)) ≤ 3 ↔ ¬ 3 <
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)))) |
156 | 85, 35, 155 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) →
((vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) ≤ 3 ↔ ¬ 3 <
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚)))) |
157 | 154, 156 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (vol*‘ran
𝐹)) → ¬ 3 <
(vol*‘∪ 𝑚 ∈ ℕ (𝑇‘𝑚))) |
158 | 134, 157 | pm2.65da 814 |
. . . 4
⊢ (𝜑 → ¬ 0 <
(vol*‘ran 𝐹)) |
159 | | ovolge0 24645 |
. . . . . . 7
⊢ (ran
𝐹 ⊆ ℝ → 0
≤ (vol*‘ran 𝐹)) |
160 | 20, 159 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (vol*‘ran
𝐹)) |
161 | | 0xr 11022 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
162 | | ovolcl 24642 |
. . . . . . . 8
⊢ (ran
𝐹 ⊆ ℝ →
(vol*‘ran 𝐹) ∈
ℝ*) |
163 | 20, 162 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (vol*‘ran 𝐹) ∈
ℝ*) |
164 | | xrleloe 12878 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ (vol*‘ran 𝐹) ∈ ℝ*) → (0 ≤
(vol*‘ran 𝐹) ↔
(0 < (vol*‘ran 𝐹)
∨ 0 = (vol*‘ran 𝐹)))) |
165 | 161, 163,
164 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (0 ≤ (vol*‘ran
𝐹) ↔ (0 <
(vol*‘ran 𝐹) ∨ 0 =
(vol*‘ran 𝐹)))) |
166 | 160, 165 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (0 < (vol*‘ran
𝐹) ∨ 0 = (vol*‘ran
𝐹))) |
167 | 166 | ord 861 |
. . . 4
⊢ (𝜑 → (¬ 0 <
(vol*‘ran 𝐹) → 0
= (vol*‘ran 𝐹))) |
168 | 158, 167 | mpd 15 |
. . 3
⊢ (𝜑 → 0 = (vol*‘ran 𝐹)) |
169 | 168 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 0 = (vol*‘ran
𝐹)) |
170 | 33, 169 | eqtr4d 2781 |
1
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑇‘𝑚)) = 0) |