MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem4 Structured version   Visualization version   GIF version

Theorem vitalilem4 25512
Description: Lemma for vitali 25514. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem4 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
21oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
32eleq1d 2813 . . . . . . 7 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
43rabbidv 3413 . . . . . 6 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
5 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
6 reex 11159 . . . . . . 7 ℝ ∈ V
76rabex 5294 . . . . . 6 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
84, 5, 7fvmpt 6968 . . . . 5 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
98adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
109fveq2d 6862 . . 3 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
11 vitali.1 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
12 vitali.2 . . . . . . . 8 𝑆 = ((0[,]1) / )
13 vitali.3 . . . . . . . 8 (𝜑𝐹 Fn 𝑆)
14 vitali.4 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
15 vitali.5 . . . . . . . 8 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
16 vitali.7 . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
1711, 12, 13, 14, 15, 5, 16vitalilem2 25510 . . . . . . 7 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
1817simp1d 1142 . . . . . 6 (𝜑 → ran 𝐹 ⊆ (0[,]1))
19 unitssre 13460 . . . . . 6 (0[,]1) ⊆ ℝ
2018, 19sstrdi 3959 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
2120adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → ran 𝐹 ⊆ ℝ)
22 neg1rr 12172 . . . . . 6 -1 ∈ ℝ
23 1re 11174 . . . . . 6 1 ∈ ℝ
24 iccssre 13390 . . . . . 6 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
2522, 23, 24mp2an 692 . . . . 5 (-1[,]1) ⊆ ℝ
26 f1of 6800 . . . . . . . 8 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2715, 26syl 17 . . . . . . 7 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2827ffvelcdmda 7056 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (ℚ ∩ (-1[,]1)))
2928elin2d 4168 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (-1[,]1))
3025, 29sselid 3944 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
31 eqidd 2730 . . . 4 ((𝜑𝑚 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
3221, 30, 31ovolshft 25412 . . 3 ((𝜑𝑚 ∈ ℕ) → (vol*‘ran 𝐹) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
3310, 32eqtr4d 2767 . 2 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = (vol*‘ran 𝐹))
34 3re 12266 . . . . . . . 8 3 ∈ ℝ
3534rexri 11232 . . . . . . 7 3 ∈ ℝ*
3635a1i 11 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 ∈ ℝ*)
37 3rp 12957 . . . . . . . . . . . . 13 3 ∈ ℝ+
38 0re 11176 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
39 0le1 11701 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
40 ovolicc 25424 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
4138, 23, 39, 40mp3an 1463 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]1)) = (1 − 0)
42 1m0e1 12302 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
4341, 42eqtri 2752 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]1)) = 1
4443, 23eqeltri 2824 . . . . . . . . . . . . . . . . 17 (vol*‘(0[,]1)) ∈ ℝ
45 ovolsscl 25387 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℝ ∧ (vol*‘(0[,]1)) ∈ ℝ) → (vol*‘ran 𝐹) ∈ ℝ)
4619, 44, 45mp3an23 1455 . . . . . . . . . . . . . . . 16 (ran 𝐹 ⊆ (0[,]1) → (vol*‘ran 𝐹) ∈ ℝ)
4718, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (vol*‘ran 𝐹) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 0 < (vol*‘ran 𝐹))
5048, 49elrpd 12992 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℝ+)
51 rpdivcl 12978 . . . . . . . . . . . . 13 ((3 ∈ ℝ+ ∧ (vol*‘ran 𝐹) ∈ ℝ+) → (3 / (vol*‘ran 𝐹)) ∈ ℝ+)
5237, 50, 51sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) ∈ ℝ+)
5352rpred 12995 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) ∈ ℝ)
5452rpge0d 12999 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 0 ≤ (3 / (vol*‘ran 𝐹)))
55 flge0nn0 13782 . . . . . . . . . . 11 (((3 / (vol*‘ran 𝐹)) ∈ ℝ ∧ 0 ≤ (3 / (vol*‘ran 𝐹))) → (⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0)
5653, 54, 55syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0)
57 nn0p1nn 12481 . . . . . . . . . 10 ((⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0 → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ)
5856, 57syl 17 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ)
5958nnred 12201 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℝ)
6059, 48remulcld 11204 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ℝ)
6160rexrd 11224 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ℝ*)
626elpw2 5289 . . . . . . . . . . . . . . . . . 18 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
6320, 62sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
6463anim1i 615 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
65 eldif 3924 . . . . . . . . . . . . . . . 16 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
6664, 65sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
6766ex 412 . . . . . . . . . . . . . 14 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
6816, 67mt3d 148 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ∈ dom vol)
69 inss1 4200 . . . . . . . . . . . . . . . 16 (ℚ ∩ (-1[,]1)) ⊆ ℚ
70 qssre 12918 . . . . . . . . . . . . . . . 16 ℚ ⊆ ℝ
7169, 70sstri 3956 . . . . . . . . . . . . . . 15 (ℚ ∩ (-1[,]1)) ⊆ ℝ
72 fss 6704 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
7327, 71, 72sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶ℝ)
7473ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
75 shftmbl 25439 . . . . . . . . . . . . 13 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
7668, 74, 75syl2an2r 685 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
7776, 5fmptd 7086 . . . . . . . . . . 11 (𝜑𝑇:ℕ⟶dom vol)
7877ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
7978ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
80 iunmbl 25454 . . . . . . . . 9 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
8179, 80syl 17 . . . . . . . 8 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
82 mblss 25432 . . . . . . . 8 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
83 ovolcl 25379 . . . . . . . 8 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
8481, 82, 833syl 18 . . . . . . 7 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
8584adantr 480 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
86 flltp1 13762 . . . . . . . 8 ((3 / (vol*‘ran 𝐹)) ∈ ℝ → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1))
8753, 86syl 17 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1))
8834a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 ∈ ℝ)
8988, 59, 50ltdivmul2d 13047 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ↔ 3 < (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))))
9087, 89mpbid 232 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 < (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
91 nnuz 12836 . . . . . . . . . . 11 ℕ = (ℤ‘1)
92 1zzd 12564 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 1 ∈ ℤ)
93 mblvol 25431 . . . . . . . . . . . . . . . . 17 ((𝑇𝑚) ∈ dom vol → (vol‘(𝑇𝑚)) = (vol*‘(𝑇𝑚)))
9478, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘(𝑇𝑚)))
9594, 33eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘ran 𝐹))
9647adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (vol*‘ran 𝐹) ∈ ℝ)
9795, 96eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) ∈ ℝ)
9897adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) ∈ ℝ)
99 eqid 2729 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))
10098, 99fmptd 7086 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))):ℕ⟶ℝ)
101100ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))‘𝑘) ∈ ℝ)
10291, 92, 101serfre 13996 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))):ℕ⟶ℝ)
103102frnd 6696 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ)
104 ressxr 11218 . . . . . . . . 9 ℝ ⊆ ℝ*
105103, 104sstrdi 3959 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ*)
10695adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘ran 𝐹))
107106mpteq2dva 5200 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹)))
108 fconstmpt 5700 . . . . . . . . . . . . 13 (ℕ × {(vol*‘ran 𝐹)}) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹))
109107, 108eqtr4di 2782 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (ℕ × {(vol*‘ran 𝐹)}))
110109seqeq3d 13974 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) = seq1( + , (ℕ × {(vol*‘ran 𝐹)})))
111110fveq1d 6860 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)))
11248recnd 11202 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℂ)
113 ser1const 14023 . . . . . . . . . . 11 (((vol*‘ran 𝐹) ∈ ℂ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
114112, 58, 113syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
115111, 114eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
116102ffnd 6689 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) Fn ℕ)
117 fnfvelrn 7052 . . . . . . . . . 10 ((seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) Fn ℕ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
118116, 58, 117syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
119115, 118eqeltrrd 2829 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
120 supxrub 13284 . . . . . . . 8 ((ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ* ∧ (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
121105, 119, 120syl2anc 584 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
12281adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
123 mblvol 25431 . . . . . . . . 9 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
124122, 123syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
12578, 97jca 511 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ))
126125ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ))
12711, 12, 13, 14, 15, 5, 16vitalilem3 25511 . . . . . . . . . 10 (𝜑Disj 𝑚 ∈ ℕ (𝑇𝑚))
128127adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → Disj 𝑚 ∈ ℕ (𝑇𝑚))
129 eqid 2729 . . . . . . . . . 10 seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))
130129, 99voliun 25455 . . . . . . . . 9 ((∀𝑚 ∈ ℕ ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ) ∧ Disj 𝑚 ∈ ℕ (𝑇𝑚)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
131126, 128, 130syl2an2r 685 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
132124, 131eqtr3d 2766 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
133121, 132breqtrrd 5135 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
13436, 61, 85, 90, 133xrltletrd 13121 . . . . 5 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
13517simp3d 1144 . . . . . . . . 9 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
136135adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
137 2re 12260 . . . . . . . . 9 2 ∈ ℝ
138 iccssre 13390 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 2 ∈ ℝ) → (-1[,]2) ⊆ ℝ)
13922, 137, 138mp2an 692 . . . . . . . 8 (-1[,]2) ⊆ ℝ
140 ovolss 25386 . . . . . . . 8 (( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2) ∧ (-1[,]2) ⊆ ℝ) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ (vol*‘(-1[,]2)))
141136, 139, 140sylancl 586 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ (vol*‘(-1[,]2)))
142 2cn 12261 . . . . . . . . 9 2 ∈ ℂ
143 ax-1cn 11126 . . . . . . . . 9 1 ∈ ℂ
144142, 143subnegi 11501 . . . . . . . 8 (2 − -1) = (2 + 1)
145 neg1lt0 12174 . . . . . . . . . . 11 -1 < 0
146 2pos 12289 . . . . . . . . . . 11 0 < 2
14722, 38, 137lttri 11300 . . . . . . . . . . 11 ((-1 < 0 ∧ 0 < 2) → -1 < 2)
148145, 146, 147mp2an 692 . . . . . . . . . 10 -1 < 2
14922, 137, 148ltleii 11297 . . . . . . . . 9 -1 ≤ 2
150 ovolicc 25424 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 2 ∈ ℝ ∧ -1 ≤ 2) → (vol*‘(-1[,]2)) = (2 − -1))
15122, 137, 149, 150mp3an 1463 . . . . . . . 8 (vol*‘(-1[,]2)) = (2 − -1)
152 df-3 12250 . . . . . . . 8 3 = (2 + 1)
153144, 151, 1523eqtr4i 2762 . . . . . . 7 (vol*‘(-1[,]2)) = 3
154141, 153breqtrdi 5148 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3)
155 xrlenlt 11239 . . . . . . 7 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 3 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3 ↔ ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚))))
15685, 35, 155sylancl 586 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3 ↔ ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚))))
157154, 156mpbid 232 . . . . 5 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
158134, 157pm2.65da 816 . . . 4 (𝜑 → ¬ 0 < (vol*‘ran 𝐹))
159 ovolge0 25382 . . . . . . 7 (ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ran 𝐹))
16020, 159syl 17 . . . . . 6 (𝜑 → 0 ≤ (vol*‘ran 𝐹))
161 0xr 11221 . . . . . . 7 0 ∈ ℝ*
162 ovolcl 25379 . . . . . . . 8 (ran 𝐹 ⊆ ℝ → (vol*‘ran 𝐹) ∈ ℝ*)
16320, 162syl 17 . . . . . . 7 (𝜑 → (vol*‘ran 𝐹) ∈ ℝ*)
164 xrleloe 13104 . . . . . . 7 ((0 ∈ ℝ* ∧ (vol*‘ran 𝐹) ∈ ℝ*) → (0 ≤ (vol*‘ran 𝐹) ↔ (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹))))
165161, 163, 164sylancr 587 . . . . . 6 (𝜑 → (0 ≤ (vol*‘ran 𝐹) ↔ (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹))))
166160, 165mpbid 232 . . . . 5 (𝜑 → (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹)))
167166ord 864 . . . 4 (𝜑 → (¬ 0 < (vol*‘ran 𝐹) → 0 = (vol*‘ran 𝐹)))
168158, 167mpd 15 . . 3 (𝜑 → 0 = (vol*‘ran 𝐹))
169168adantr 480 . 2 ((𝜑𝑚 ∈ ℕ) → 0 = (vol*‘ran 𝐹))
17033, 169eqtr4d 2767 1 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   ciun 4955  Disj wdisj 5074   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387   / cqs 8670  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cq 12907  +crp 12951  [,]cicc 13309  cfl 13752  seqcseq 13966  vol*covol 25363  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366
This theorem is referenced by:  vitalilem5  25513
  Copyright terms: Public domain W3C validator