MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem4 Structured version   Visualization version   GIF version

Theorem vitalilem4 25545
Description: Lemma for vitali 25547. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem4 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
21oveq2d 7385 . . . . . . . 8 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
32eleq1d 2813 . . . . . . 7 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
43rabbidv 3410 . . . . . 6 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
5 vitali.6 . . . . . 6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
6 reex 11135 . . . . . . 7 ℝ ∈ V
76rabex 5289 . . . . . 6 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
84, 5, 7fvmpt 6950 . . . . 5 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
98adantl 481 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
109fveq2d 6844 . . 3 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
11 vitali.1 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
12 vitali.2 . . . . . . . 8 𝑆 = ((0[,]1) / )
13 vitali.3 . . . . . . . 8 (𝜑𝐹 Fn 𝑆)
14 vitali.4 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
15 vitali.5 . . . . . . . 8 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
16 vitali.7 . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
1711, 12, 13, 14, 15, 5, 16vitalilem2 25543 . . . . . . 7 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
1817simp1d 1142 . . . . . 6 (𝜑 → ran 𝐹 ⊆ (0[,]1))
19 unitssre 13436 . . . . . 6 (0[,]1) ⊆ ℝ
2018, 19sstrdi 3956 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ)
2120adantr 480 . . . 4 ((𝜑𝑚 ∈ ℕ) → ran 𝐹 ⊆ ℝ)
22 neg1rr 12148 . . . . . 6 -1 ∈ ℝ
23 1re 11150 . . . . . 6 1 ∈ ℝ
24 iccssre 13366 . . . . . 6 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
2522, 23, 24mp2an 692 . . . . 5 (-1[,]1) ⊆ ℝ
26 f1of 6782 . . . . . . . 8 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2715, 26syl 17 . . . . . . 7 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2827ffvelcdmda 7038 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (ℚ ∩ (-1[,]1)))
2928elin2d 4164 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (-1[,]1))
3025, 29sselid 3941 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
31 eqidd 2730 . . . 4 ((𝜑𝑚 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
3221, 30, 31ovolshft 25445 . . 3 ((𝜑𝑚 ∈ ℕ) → (vol*‘ran 𝐹) = (vol*‘{𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
3310, 32eqtr4d 2767 . 2 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = (vol*‘ran 𝐹))
34 3re 12242 . . . . . . . 8 3 ∈ ℝ
3534rexri 11208 . . . . . . 7 3 ∈ ℝ*
3635a1i 11 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 ∈ ℝ*)
37 3rp 12933 . . . . . . . . . . . . 13 3 ∈ ℝ+
38 0re 11152 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ
39 0le1 11677 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
40 ovolicc 25457 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol*‘(0[,]1)) = (1 − 0))
4138, 23, 39, 40mp3an 1463 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]1)) = (1 − 0)
42 1m0e1 12278 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
4341, 42eqtri 2752 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]1)) = 1
4443, 23eqeltri 2824 . . . . . . . . . . . . . . . . 17 (vol*‘(0[,]1)) ∈ ℝ
45 ovolsscl 25420 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℝ ∧ (vol*‘(0[,]1)) ∈ ℝ) → (vol*‘ran 𝐹) ∈ ℝ)
4619, 44, 45mp3an23 1455 . . . . . . . . . . . . . . . 16 (ran 𝐹 ⊆ (0[,]1) → (vol*‘ran 𝐹) ∈ ℝ)
4718, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (vol*‘ran 𝐹) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 0 < (vol*‘ran 𝐹))
5048, 49elrpd 12968 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℝ+)
51 rpdivcl 12954 . . . . . . . . . . . . 13 ((3 ∈ ℝ+ ∧ (vol*‘ran 𝐹) ∈ ℝ+) → (3 / (vol*‘ran 𝐹)) ∈ ℝ+)
5237, 50, 51sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) ∈ ℝ+)
5352rpred 12971 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) ∈ ℝ)
5452rpge0d 12975 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 0 ≤ (3 / (vol*‘ran 𝐹)))
55 flge0nn0 13758 . . . . . . . . . . 11 (((3 / (vol*‘ran 𝐹)) ∈ ℝ ∧ 0 ≤ (3 / (vol*‘ran 𝐹))) → (⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0)
5653, 54, 55syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0)
57 nn0p1nn 12457 . . . . . . . . . 10 ((⌊‘(3 / (vol*‘ran 𝐹))) ∈ ℕ0 → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ)
5856, 57syl 17 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ)
5958nnred 12177 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℝ)
6059, 48remulcld 11180 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ℝ)
6160rexrd 11200 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ℝ*)
626elpw2 5284 . . . . . . . . . . . . . . . . . 18 (ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
6320, 62sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ 𝒫 ℝ)
6463anim1i 615 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
65 eldif 3921 . . . . . . . . . . . . . . . 16 (ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol))
6664, 65sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ ran 𝐹 ∈ dom vol) → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
6766ex 412 . . . . . . . . . . . . . 14 (𝜑 → (¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)))
6816, 67mt3d 148 . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ∈ dom vol)
69 inss1 4196 . . . . . . . . . . . . . . . 16 (ℚ ∩ (-1[,]1)) ⊆ ℚ
70 qssre 12894 . . . . . . . . . . . . . . . 16 ℚ ⊆ ℝ
7169, 70sstri 3953 . . . . . . . . . . . . . . 15 (ℚ ∩ (-1[,]1)) ⊆ ℝ
72 fss 6686 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℝ) → 𝐺:ℕ⟶ℝ)
7327, 71, 72sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶ℝ)
7473ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
75 shftmbl 25472 . . . . . . . . . . . . 13 ((ran 𝐹 ∈ dom vol ∧ (𝐺𝑛) ∈ ℝ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
7668, 74, 75syl2an2r 685 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} ∈ dom vol)
7776, 5fmptd 7068 . . . . . . . . . . 11 (𝜑𝑇:ℕ⟶dom vol)
7877ffvelcdmda 7038 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) ∈ dom vol)
7978ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
80 iunmbl 25487 . . . . . . . . 9 (∀𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
8179, 80syl 17 . . . . . . . 8 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
82 mblss 25465 . . . . . . . 8 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ)
83 ovolcl 25412 . . . . . . . 8 ( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ ℝ → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
8481, 82, 833syl 18 . . . . . . 7 (𝜑 → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
8584adantr 480 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ*)
86 flltp1 13738 . . . . . . . 8 ((3 / (vol*‘ran 𝐹)) ∈ ℝ → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1))
8753, 86syl 17 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1))
8834a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 ∈ ℝ)
8988, 59, 50ltdivmul2d 13023 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((3 / (vol*‘ran 𝐹)) < ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ↔ 3 < (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹))))
9087, 89mpbid 232 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 < (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
91 nnuz 12812 . . . . . . . . . . 11 ℕ = (ℤ‘1)
92 1zzd 12540 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 1 ∈ ℤ)
93 mblvol 25464 . . . . . . . . . . . . . . . . 17 ((𝑇𝑚) ∈ dom vol → (vol‘(𝑇𝑚)) = (vol*‘(𝑇𝑚)))
9478, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘(𝑇𝑚)))
9594, 33eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘ran 𝐹))
9647adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (vol*‘ran 𝐹) ∈ ℝ)
9795, 96eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) ∈ ℝ)
9897adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) ∈ ℝ)
99 eqid 2729 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))
10098, 99fmptd 7068 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))):ℕ⟶ℝ)
101100ffvelcdmda 7038 . . . . . . . . . . 11 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))‘𝑘) ∈ ℝ)
10291, 92, 101serfre 13972 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))):ℕ⟶ℝ)
103102frnd 6678 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ)
104 ressxr 11194 . . . . . . . . 9 ℝ ⊆ ℝ*
105103, 104sstrdi 3956 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ*)
10695adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < (vol*‘ran 𝐹)) ∧ 𝑚 ∈ ℕ) → (vol‘(𝑇𝑚)) = (vol*‘ran 𝐹))
107106mpteq2dva 5195 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹)))
108 fconstmpt 5693 . . . . . . . . . . . . 13 (ℕ × {(vol*‘ran 𝐹)}) = (𝑚 ∈ ℕ ↦ (vol*‘ran 𝐹))
109107, 108eqtr4di 2782 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))) = (ℕ × {(vol*‘ran 𝐹)}))
110109seqeq3d 13950 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) = seq1( + , (ℕ × {(vol*‘ran 𝐹)})))
111110fveq1d 6842 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)))
11248recnd 11178 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ran 𝐹) ∈ ℂ)
113 ser1const 13999 . . . . . . . . . . 11 (((vol*‘ran 𝐹) ∈ ℂ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
114112, 58, 113syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (ℕ × {(vol*‘ran 𝐹)}))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
115111, 114eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) = (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)))
116102ffnd 6671 . . . . . . . . . 10 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) Fn ℕ)
117 fnfvelrn 7034 . . . . . . . . . 10 ((seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) Fn ℕ ∧ ((⌊‘(3 / (vol*‘ran 𝐹))) + 1) ∈ ℕ) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
118116, 58, 117syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))‘((⌊‘(3 / (vol*‘ran 𝐹))) + 1)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
119115, 118eqeltrrd 2829 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))))
120 supxrub 13260 . . . . . . . 8 ((ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) ⊆ ℝ* ∧ (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ∈ ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
121105, 119, 120syl2anc 584 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
12281adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol)
123 mblvol 25464 . . . . . . . . 9 ( 𝑚 ∈ ℕ (𝑇𝑚) ∈ dom vol → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
124122, 123syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
12578, 97jca 511 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ))
126125ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ))
12711, 12, 13, 14, 15, 5, 16vitalilem3 25544 . . . . . . . . . 10 (𝜑Disj 𝑚 ∈ ℕ (𝑇𝑚))
128127adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → Disj 𝑚 ∈ ℕ (𝑇𝑚))
129 eqid 2729 . . . . . . . . . 10 seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚))))
130129, 99voliun 25488 . . . . . . . . 9 ((∀𝑚 ∈ ℕ ((𝑇𝑚) ∈ dom vol ∧ (vol‘(𝑇𝑚)) ∈ ℝ) ∧ Disj 𝑚 ∈ ℕ (𝑇𝑚)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
131126, 128, 130syl2an2r 685 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
132124, 131eqtr3d 2766 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol‘(𝑇𝑚)))), ℝ*, < ))
133121, 132breqtrrd 5130 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (((⌊‘(3 / (vol*‘ran 𝐹))) + 1) · (vol*‘ran 𝐹)) ≤ (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
13436, 61, 85, 90, 133xrltletrd 13097 . . . . 5 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
13517simp3d 1144 . . . . . . . . 9 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
136135adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
137 2re 12236 . . . . . . . . 9 2 ∈ ℝ
138 iccssre 13366 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 2 ∈ ℝ) → (-1[,]2) ⊆ ℝ)
13922, 137, 138mp2an 692 . . . . . . . 8 (-1[,]2) ⊆ ℝ
140 ovolss 25419 . . . . . . . 8 (( 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2) ∧ (-1[,]2) ⊆ ℝ) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ (vol*‘(-1[,]2)))
141136, 139, 140sylancl 586 . . . . . . 7 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ (vol*‘(-1[,]2)))
142 2cn 12237 . . . . . . . . 9 2 ∈ ℂ
143 ax-1cn 11102 . . . . . . . . 9 1 ∈ ℂ
144142, 143subnegi 11477 . . . . . . . 8 (2 − -1) = (2 + 1)
145 neg1lt0 12150 . . . . . . . . . . 11 -1 < 0
146 2pos 12265 . . . . . . . . . . 11 0 < 2
14722, 38, 137lttri 11276 . . . . . . . . . . 11 ((-1 < 0 ∧ 0 < 2) → -1 < 2)
148145, 146, 147mp2an 692 . . . . . . . . . 10 -1 < 2
14922, 137, 148ltleii 11273 . . . . . . . . 9 -1 ≤ 2
150 ovolicc 25457 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 2 ∈ ℝ ∧ -1 ≤ 2) → (vol*‘(-1[,]2)) = (2 − -1))
15122, 137, 149, 150mp3an 1463 . . . . . . . 8 (vol*‘(-1[,]2)) = (2 − -1)
152 df-3 12226 . . . . . . . 8 3 = (2 + 1)
153144, 151, 1523eqtr4i 2762 . . . . . . 7 (vol*‘(-1[,]2)) = 3
154141, 153breqtrdi 5143 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3)
155 xrlenlt 11215 . . . . . . 7 (((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ∈ ℝ* ∧ 3 ∈ ℝ*) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3 ↔ ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚))))
15685, 35, 155sylancl 586 . . . . . 6 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ((vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)) ≤ 3 ↔ ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚))))
157154, 156mpbid 232 . . . . 5 ((𝜑 ∧ 0 < (vol*‘ran 𝐹)) → ¬ 3 < (vol*‘ 𝑚 ∈ ℕ (𝑇𝑚)))
158134, 157pm2.65da 816 . . . 4 (𝜑 → ¬ 0 < (vol*‘ran 𝐹))
159 ovolge0 25415 . . . . . . 7 (ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ran 𝐹))
16020, 159syl 17 . . . . . 6 (𝜑 → 0 ≤ (vol*‘ran 𝐹))
161 0xr 11197 . . . . . . 7 0 ∈ ℝ*
162 ovolcl 25412 . . . . . . . 8 (ran 𝐹 ⊆ ℝ → (vol*‘ran 𝐹) ∈ ℝ*)
16320, 162syl 17 . . . . . . 7 (𝜑 → (vol*‘ran 𝐹) ∈ ℝ*)
164 xrleloe 13080 . . . . . . 7 ((0 ∈ ℝ* ∧ (vol*‘ran 𝐹) ∈ ℝ*) → (0 ≤ (vol*‘ran 𝐹) ↔ (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹))))
165161, 163, 164sylancr 587 . . . . . 6 (𝜑 → (0 ≤ (vol*‘ran 𝐹) ↔ (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹))))
166160, 165mpbid 232 . . . . 5 (𝜑 → (0 < (vol*‘ran 𝐹) ∨ 0 = (vol*‘ran 𝐹)))
167166ord 864 . . . 4 (𝜑 → (¬ 0 < (vol*‘ran 𝐹) → 0 = (vol*‘ran 𝐹)))
168158, 167mpd 15 . . 3 (𝜑 → 0 = (vol*‘ran 𝐹))
169168adantr 480 . 2 ((𝜑𝑚 ∈ ℕ) → 0 = (vol*‘ran 𝐹))
17033, 169eqtr4d 2767 1 ((𝜑𝑚 ∈ ℕ) → (vol*‘(𝑇𝑚)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  cdif 3908  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   ciun 4951  Disj wdisj 5069   class class class wbr 5102  {copab 5164  cmpt 5183   × cxp 5629  dom cdm 5631  ran crn 5632   Fn wfn 6494  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369   / cqs 8647  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cq 12883  +crp 12927  [,]cicc 13285  cfl 13728  seqcseq 13942  vol*covol 25396  volcvol 25397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398  df-vol 25399
This theorem is referenced by:  vitalilem5  25546
  Copyright terms: Public domain W3C validator