MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Visualization version   GIF version

Theorem torsubg 19370
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
Assertion
Ref Expression
torsubg (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))

Proof of Theorem torsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5978 . . . 4 (𝑂 “ ℕ) ⊆ dom 𝑂
2 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 torsubg.1 . . . . . 6 𝑂 = (od‘𝐺)
42, 3odf 19060 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
54fdmi 6596 . . . 4 dom 𝑂 = (Base‘𝐺)
61, 5sseqtri 3953 . . 3 (𝑂 “ ℕ) ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ⊆ (Base‘𝐺))
8 ablgrp 19306 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
102, 9grpidcl 18522 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
118, 10syl 17 . . . 4 (𝐺 ∈ Abel → (0g𝐺) ∈ (Base‘𝐺))
123, 9od1 19081 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
138, 12syl 17 . . . . 5 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) = 1)
14 1nn 11914 . . . . 5 1 ∈ ℕ
1513, 14eqeltrdi 2847 . . . 4 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) ∈ ℕ)
16 ffn 6584 . . . . . 6 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
174, 16ax-mp 5 . . . . 5 𝑂 Fn (Base‘𝐺)
18 elpreima 6917 . . . . 5 (𝑂 Fn (Base‘𝐺) → ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ)))
1917, 18ax-mp 5 . . . 4 ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ))
2011, 15, 19sylanbrc 582 . . 3 (𝐺 ∈ Abel → (0g𝐺) ∈ (𝑂 “ ℕ))
2120ne0d 4266 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ≠ ∅)
228ad2antrr 722 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Grp)
236sseli 3913 . . . . . . . 8 (𝑥 ∈ (𝑂 “ ℕ) → 𝑥 ∈ (Base‘𝐺))
2423ad2antlr 723 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑥 ∈ (Base‘𝐺))
256sseli 3913 . . . . . . . 8 (𝑦 ∈ (𝑂 “ ℕ) → 𝑦 ∈ (Base‘𝐺))
2625adantl 481 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑦 ∈ (Base‘𝐺))
27 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
282, 27grpcl 18500 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
2922, 24, 26, 28syl3anc 1369 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
30 0nnn 11939 . . . . . . . . 9 ¬ 0 ∈ ℕ
312, 3odcl 19059 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (Base‘𝐺) → (𝑂𝑥) ∈ ℕ0)
3224, 31syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ0)
3332nn0zd 12353 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℤ)
342, 3odcl 19059 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Base‘𝐺) → (𝑂𝑦) ∈ ℕ0)
3526, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ0)
3635nn0zd 12353 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℤ)
3733, 36gcdcld 16143 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℕ0)
3837nn0cnd 12225 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℂ)
3938mul02d 11103 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) = 0)
4039breq1d 5080 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ 0 ∥ ((𝑂𝑥) · (𝑂𝑦))))
4133, 36zmulcld 12361 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ)
42 0dvds 15914 . . . . . . . . . . . 12 (((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4341, 42syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4440, 43bitrd 278 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
45 elpreima 6917 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ)))
4617, 45ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ))
4746simprbi 496 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑂 “ ℕ) → (𝑂𝑥) ∈ ℕ)
4847ad2antlr 723 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
49 elpreima 6917 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ)))
5017, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ))
5150simprbi 496 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑂 “ ℕ) → (𝑂𝑦) ∈ ℕ)
5251adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ)
5348, 52nnmulcld 11956 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ)
54 eleq1 2826 . . . . . . . . . . 11 (((𝑂𝑥) · (𝑂𝑦)) = 0 → (((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ ↔ 0 ∈ ℕ))
5553, 54syl5ibcom 244 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (((𝑂𝑥) · (𝑂𝑦)) = 0 → 0 ∈ ℕ))
5644, 55sylbid 239 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) → 0 ∈ ℕ))
5730, 56mtoi 198 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
58 simpll 763 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Abel)
593, 2, 27odadd1 19364 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
6058, 24, 26, 59syl3anc 1369 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
61 oveq1 7262 . . . . . . . . . 10 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) = (0 · ((𝑂𝑥) gcd (𝑂𝑦))))
6261breq1d 5080 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6360, 62syl5ibcom 244 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6457, 63mtod 197 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0)
652, 3odcl 19059 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
6629, 65syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
67 elnn0 12165 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0 ↔ ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
6866, 67sylib 217 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
6968ord 860 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (¬ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ → (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
7064, 69mt3d 148 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)
71 elpreima 6917 . . . . . . 7 (𝑂 Fn (Base‘𝐺) → ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)))
7217, 71ax-mp 5 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ))
7329, 70, 72sylanbrc 582 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
7473ralrimiva 3107 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
75 eqid 2738 . . . . . . 7 (invg𝐺) = (invg𝐺)
762, 75grpinvcl 18542 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
778, 23, 76syl2an 595 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
783, 75, 2odinv 19083 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
798, 23, 78syl2an 595 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
8047adantl 481 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
8179, 80eqeltrd 2839 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)
82 elpreima 6917 . . . . . 6 (𝑂 Fn (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)))
8317, 82ax-mp 5 . . . . 5 (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ))
8477, 81, 83sylanbrc 582 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ))
8574, 84jca 511 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
8685ralrimiva 3107 . 2 (𝐺 ∈ Abel → ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
872, 27, 75issubg2 18685 . . 3 (𝐺 ∈ Grp → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
888, 87syl 17 . 2 (𝐺 ∈ Abel → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
897, 21, 86, 88mpbir3and 1340 1 (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253   class class class wbr 5070  ccnv 5579  dom cdm 5580  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  0cn0 12163  cz 12249  cdvds 15891   gcd cgcd 16129  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  odcod 19047  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-od 19051  df-cmn 19303  df-abl 19304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator