Step | Hyp | Ref
| Expression |
1 | | cnvimass 5978 |
. . . 4
⊢ (◡𝑂 “ ℕ) ⊆ dom 𝑂 |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
3 | | torsubg.1 |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
4 | 2, 3 | odf 19060 |
. . . . 5
⊢ 𝑂:(Base‘𝐺)⟶ℕ0 |
5 | 4 | fdmi 6596 |
. . . 4
⊢ dom 𝑂 = (Base‘𝐺) |
6 | 1, 5 | sseqtri 3953 |
. . 3
⊢ (◡𝑂 “ ℕ) ⊆ (Base‘𝐺) |
7 | 6 | a1i 11 |
. 2
⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ⊆ (Base‘𝐺)) |
8 | | ablgrp 19306 |
. . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
9 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
10 | 2, 9 | grpidcl 18522 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
11 | 8, 10 | syl 17 |
. . . 4
⊢ (𝐺 ∈ Abel →
(0g‘𝐺)
∈ (Base‘𝐺)) |
12 | 3, 9 | od1 19081 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑂‘(0g‘𝐺)) = 1) |
13 | 8, 12 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ Abel → (𝑂‘(0g‘𝐺)) = 1) |
14 | | 1nn 11914 |
. . . . 5
⊢ 1 ∈
ℕ |
15 | 13, 14 | eqeltrdi 2847 |
. . . 4
⊢ (𝐺 ∈ Abel → (𝑂‘(0g‘𝐺)) ∈
ℕ) |
16 | | ffn 6584 |
. . . . . 6
⊢ (𝑂:(Base‘𝐺)⟶ℕ0 → 𝑂 Fn (Base‘𝐺)) |
17 | 4, 16 | ax-mp 5 |
. . . . 5
⊢ 𝑂 Fn (Base‘𝐺) |
18 | | elpreima 6917 |
. . . . 5
⊢ (𝑂 Fn (Base‘𝐺) →
((0g‘𝐺)
∈ (◡𝑂 “ ℕ) ↔
((0g‘𝐺)
∈ (Base‘𝐺) ∧
(𝑂‘(0g‘𝐺)) ∈
ℕ))) |
19 | 17, 18 | ax-mp 5 |
. . . 4
⊢
((0g‘𝐺) ∈ (◡𝑂 “ ℕ) ↔
((0g‘𝐺)
∈ (Base‘𝐺) ∧
(𝑂‘(0g‘𝐺)) ∈
ℕ)) |
20 | 11, 15, 19 | sylanbrc 582 |
. . 3
⊢ (𝐺 ∈ Abel →
(0g‘𝐺)
∈ (◡𝑂 “ ℕ)) |
21 | 20 | ne0d 4266 |
. 2
⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ≠
∅) |
22 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝐺 ∈ Grp) |
23 | 6 | sseli 3913 |
. . . . . . . 8
⊢ (𝑥 ∈ (◡𝑂 “ ℕ) → 𝑥 ∈ (Base‘𝐺)) |
24 | 23 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝑥 ∈ (Base‘𝐺)) |
25 | 6 | sseli 3913 |
. . . . . . . 8
⊢ (𝑦 ∈ (◡𝑂 “ ℕ) → 𝑦 ∈ (Base‘𝐺)) |
26 | 25 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝑦 ∈ (Base‘𝐺)) |
27 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
28 | 2, 27 | grpcl 18500 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
29 | 22, 24, 26, 28 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
30 | | 0nnn 11939 |
. . . . . . . . 9
⊢ ¬ 0
∈ ℕ |
31 | 2, 3 | odcl 19059 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (Base‘𝐺) → (𝑂‘𝑥) ∈
ℕ0) |
32 | 24, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈
ℕ0) |
33 | 32 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈ ℤ) |
34 | 2, 3 | odcl 19059 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (Base‘𝐺) → (𝑂‘𝑦) ∈
ℕ0) |
35 | 26, 34 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑦) ∈
ℕ0) |
36 | 35 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑦) ∈ ℤ) |
37 | 33, 36 | gcdcld 16143 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) gcd (𝑂‘𝑦)) ∈
ℕ0) |
38 | 37 | nn0cnd 12225 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) gcd (𝑂‘𝑦)) ∈ ℂ) |
39 | 38 | mul02d 11103 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) = 0) |
40 | 39 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ 0 ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)))) |
41 | 33, 36 | zmulcld 12361 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℤ) |
42 | | 0dvds 15914 |
. . . . . . . . . . . 12
⊢ (((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℤ → (0 ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ ((𝑂‘𝑥) · (𝑂‘𝑦)) = 0)) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (0 ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ ((𝑂‘𝑥) · (𝑂‘𝑦)) = 0)) |
44 | 40, 43 | bitrd 278 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ ((𝑂‘𝑥) · (𝑂‘𝑦)) = 0)) |
45 | | elpreima 6917 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 Fn (Base‘𝐺) → (𝑥 ∈ (◡𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂‘𝑥) ∈ ℕ))) |
46 | 17, 45 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (◡𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂‘𝑥) ∈ ℕ)) |
47 | 46 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (◡𝑂 “ ℕ) → (𝑂‘𝑥) ∈ ℕ) |
48 | 47 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈ ℕ) |
49 | | elpreima 6917 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 Fn (Base‘𝐺) → (𝑦 ∈ (◡𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂‘𝑦) ∈ ℕ))) |
50 | 17, 49 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂‘𝑦) ∈ ℕ)) |
51 | 50 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡𝑂 “ ℕ) → (𝑂‘𝑦) ∈ ℕ) |
52 | 51 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑦) ∈ ℕ) |
53 | 48, 52 | nnmulcld 11956 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℕ) |
54 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (((𝑂‘𝑥) · (𝑂‘𝑦)) = 0 → (((𝑂‘𝑥) · (𝑂‘𝑦)) ∈ ℕ ↔ 0 ∈
ℕ)) |
55 | 53, 54 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (((𝑂‘𝑥) · (𝑂‘𝑦)) = 0 → 0 ∈
ℕ)) |
56 | 44, 55 | sylbid 239 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) → 0 ∈ ℕ)) |
57 | 30, 56 | mtoi 198 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ¬ (0 ·
((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦))) |
58 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → 𝐺 ∈ Abel) |
59 | 3, 2, 27 | odadd1 19364 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦))) |
60 | 58, 24, 26, 59 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦))) |
61 | | oveq1 7262 |
. . . . . . . . . 10
⊢ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0 → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) = (0 · ((𝑂‘𝑥) gcd (𝑂‘𝑦)))) |
62 | 61 | breq1d 5080 |
. . . . . . . . 9
⊢ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0 → (((𝑂‘(𝑥(+g‘𝐺)𝑦)) · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)) ↔ (0 · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)))) |
63 | 60, 62 | syl5ibcom 244 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0 → (0 · ((𝑂‘𝑥) gcd (𝑂‘𝑦))) ∥ ((𝑂‘𝑥) · (𝑂‘𝑦)))) |
64 | 57, 63 | mtod 197 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ¬ (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0) |
65 | 2, 3 | odcl 19059 |
. . . . . . . . . 10
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) → (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈
ℕ0) |
66 | 29, 65 | syl 17 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈
ℕ0) |
67 | | elnn0 12165 |
. . . . . . . . 9
⊢ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ0 ↔ ((𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0)) |
68 | 66, 67 | sylib 217 |
. . . . . . . 8
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0)) |
69 | 68 | ord 860 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (¬ (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ → (𝑂‘(𝑥(+g‘𝐺)𝑦)) = 0)) |
70 | 64, 69 | mt3d 148 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ) |
71 | | elpreima 6917 |
. . . . . . 7
⊢ (𝑂 Fn (Base‘𝐺) → ((𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ↔ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ))) |
72 | 17, 71 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ↔ ((𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g‘𝐺)𝑦)) ∈ ℕ)) |
73 | 29, 70, 72 | sylanbrc 582 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) ∧ 𝑦 ∈ (◡𝑂 “ ℕ)) → (𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ)) |
74 | 73 | ralrimiva 3107 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → ∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ)) |
75 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
76 | 2, 75 | grpinvcl 18542 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺)) |
77 | 8, 23, 76 | syl2an 595 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) →
((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺)) |
78 | 3, 75, 2 | odinv 19083 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑂‘((invg‘𝐺)‘𝑥)) = (𝑂‘𝑥)) |
79 | 8, 23, 78 | syl2an 595 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (𝑂‘((invg‘𝐺)‘𝑥)) = (𝑂‘𝑥)) |
80 | 47 | adantl 481 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (𝑂‘𝑥) ∈ ℕ) |
81 | 79, 80 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (𝑂‘((invg‘𝐺)‘𝑥)) ∈ ℕ) |
82 | | elpreima 6917 |
. . . . . 6
⊢ (𝑂 Fn (Base‘𝐺) →
(((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ) ↔
(((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg‘𝐺)‘𝑥)) ∈ ℕ))) |
83 | 17, 82 | ax-mp 5 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ) ↔
(((invg‘𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg‘𝐺)‘𝑥)) ∈ ℕ)) |
84 | 77, 81, 83 | sylanbrc 582 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) →
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ)) |
85 | 74, 84 | jca 511 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (◡𝑂 “ ℕ)) → (∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))) |
86 | 85 | ralrimiva 3107 |
. 2
⊢ (𝐺 ∈ Abel →
∀𝑥 ∈ (◡𝑂 “ ℕ)(∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))) |
87 | 2, 27, 75 | issubg2 18685 |
. . 3
⊢ (𝐺 ∈ Grp → ((◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((◡𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (◡𝑂 “ ℕ) ≠ ∅ ∧
∀𝑥 ∈ (◡𝑂 “ ℕ)(∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))))) |
88 | 8, 87 | syl 17 |
. 2
⊢ (𝐺 ∈ Abel → ((◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((◡𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (◡𝑂 “ ℕ) ≠ ∅ ∧
∀𝑥 ∈ (◡𝑂 “ ℕ)(∀𝑦 ∈ (◡𝑂 “ ℕ)(𝑥(+g‘𝐺)𝑦) ∈ (◡𝑂 “ ℕ) ∧
((invg‘𝐺)‘𝑥) ∈ (◡𝑂 “ ℕ))))) |
89 | 7, 21, 86, 88 | mpbir3and 1340 |
1
⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺)) |