MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Visualization version   GIF version

Theorem torsubg 19791
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
Assertion
Ref Expression
torsubg (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))

Proof of Theorem torsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6056 . . . 4 (𝑂 “ ℕ) ⊆ dom 𝑂
2 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 torsubg.1 . . . . . 6 𝑂 = (od‘𝐺)
42, 3odf 19474 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
54fdmi 6702 . . . 4 dom 𝑂 = (Base‘𝐺)
61, 5sseqtri 3998 . . 3 (𝑂 “ ℕ) ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ⊆ (Base‘𝐺))
8 ablgrp 19722 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9 eqid 2730 . . . . . 6 (0g𝐺) = (0g𝐺)
102, 9grpidcl 18904 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
118, 10syl 17 . . . 4 (𝐺 ∈ Abel → (0g𝐺) ∈ (Base‘𝐺))
123, 9od1 19496 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
138, 12syl 17 . . . . 5 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) = 1)
14 1nn 12204 . . . . 5 1 ∈ ℕ
1513, 14eqeltrdi 2837 . . . 4 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) ∈ ℕ)
16 ffn 6691 . . . . . 6 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
174, 16ax-mp 5 . . . . 5 𝑂 Fn (Base‘𝐺)
18 elpreima 7033 . . . . 5 (𝑂 Fn (Base‘𝐺) → ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ)))
1917, 18ax-mp 5 . . . 4 ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ))
2011, 15, 19sylanbrc 583 . . 3 (𝐺 ∈ Abel → (0g𝐺) ∈ (𝑂 “ ℕ))
2120ne0d 4308 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ≠ ∅)
228ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Grp)
236sseli 3945 . . . . . . . 8 (𝑥 ∈ (𝑂 “ ℕ) → 𝑥 ∈ (Base‘𝐺))
2423ad2antlr 727 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑥 ∈ (Base‘𝐺))
256sseli 3945 . . . . . . . 8 (𝑦 ∈ (𝑂 “ ℕ) → 𝑦 ∈ (Base‘𝐺))
2625adantl 481 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑦 ∈ (Base‘𝐺))
27 eqid 2730 . . . . . . . 8 (+g𝐺) = (+g𝐺)
282, 27grpcl 18880 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
2922, 24, 26, 28syl3anc 1373 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
30 0nnn 12229 . . . . . . . . 9 ¬ 0 ∈ ℕ
312, 3odcl 19473 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (Base‘𝐺) → (𝑂𝑥) ∈ ℕ0)
3224, 31syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ0)
3332nn0zd 12562 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℤ)
342, 3odcl 19473 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Base‘𝐺) → (𝑂𝑦) ∈ ℕ0)
3526, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ0)
3635nn0zd 12562 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℤ)
3733, 36gcdcld 16485 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℕ0)
3837nn0cnd 12512 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℂ)
3938mul02d 11379 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) = 0)
4039breq1d 5120 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ 0 ∥ ((𝑂𝑥) · (𝑂𝑦))))
4133, 36zmulcld 12651 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ)
42 0dvds 16253 . . . . . . . . . . . 12 (((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4341, 42syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4440, 43bitrd 279 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
45 elpreima 7033 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ)))
4617, 45ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ))
4746simprbi 496 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑂 “ ℕ) → (𝑂𝑥) ∈ ℕ)
4847ad2antlr 727 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
49 elpreima 7033 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ)))
5017, 49ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ))
5150simprbi 496 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑂 “ ℕ) → (𝑂𝑦) ∈ ℕ)
5251adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ)
5348, 52nnmulcld 12246 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ)
54 eleq1 2817 . . . . . . . . . . 11 (((𝑂𝑥) · (𝑂𝑦)) = 0 → (((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ ↔ 0 ∈ ℕ))
5553, 54syl5ibcom 245 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (((𝑂𝑥) · (𝑂𝑦)) = 0 → 0 ∈ ℕ))
5644, 55sylbid 240 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) → 0 ∈ ℕ))
5730, 56mtoi 199 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
58 simpll 766 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Abel)
593, 2, 27odadd1 19785 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
6058, 24, 26, 59syl3anc 1373 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
61 oveq1 7397 . . . . . . . . . 10 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) = (0 · ((𝑂𝑥) gcd (𝑂𝑦))))
6261breq1d 5120 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6360, 62syl5ibcom 245 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6457, 63mtod 198 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0)
652, 3odcl 19473 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
6629, 65syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
67 elnn0 12451 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0 ↔ ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
6866, 67sylib 218 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
6968ord 864 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (¬ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ → (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
7064, 69mt3d 148 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)
71 elpreima 7033 . . . . . . 7 (𝑂 Fn (Base‘𝐺) → ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)))
7217, 71ax-mp 5 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ))
7329, 70, 72sylanbrc 583 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
7473ralrimiva 3126 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
75 eqid 2730 . . . . . . 7 (invg𝐺) = (invg𝐺)
762, 75grpinvcl 18926 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
778, 23, 76syl2an 596 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
783, 75, 2odinv 19498 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
798, 23, 78syl2an 596 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
8047adantl 481 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
8179, 80eqeltrd 2829 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)
82 elpreima 7033 . . . . . 6 (𝑂 Fn (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)))
8317, 82ax-mp 5 . . . . 5 (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ))
8477, 81, 83sylanbrc 583 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ))
8574, 84jca 511 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
8685ralrimiva 3126 . 2 (𝐺 ∈ Abel → ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
872, 27, 75issubg2 19080 . . 3 (𝐺 ∈ Grp → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
888, 87syl 17 . 2 (𝐺 ∈ Abel → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
897, 21, 86, 88mpbir3and 1343 1 (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299   class class class wbr 5110  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   · cmul 11080  cn 12193  0cn0 12449  cz 12536  cdvds 16229   gcd cgcd 16471  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059  odcod 19461  Abelcabl 19718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-od 19465  df-cmn 19719  df-abl 19720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator