![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramubcl | Structured version Visualization version GIF version |
Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
ramubcl | β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β β0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12480 | . . . . . 6 β’ (π΄ β β0 β π΄ β β) | |
2 | ltpnf 13101 | . . . . . . 7 β’ (π΄ β β β π΄ < +β) | |
3 | rexr 11259 | . . . . . . . 8 β’ (π΄ β β β π΄ β β*) | |
4 | pnfxr 11267 | . . . . . . . 8 β’ +β β β* | |
5 | xrltnle 11280 | . . . . . . . 8 β’ ((π΄ β β* β§ +β β β*) β (π΄ < +β β Β¬ +β β€ π΄)) | |
6 | 3, 4, 5 | sylancl 585 | . . . . . . 7 β’ (π΄ β β β (π΄ < +β β Β¬ +β β€ π΄)) |
7 | 2, 6 | mpbid 231 | . . . . . 6 β’ (π΄ β β β Β¬ +β β€ π΄) |
8 | 1, 7 | syl 17 | . . . . 5 β’ (π΄ β β0 β Β¬ +β β€ π΄) |
9 | 8 | ad2antrl 725 | . . . 4 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β Β¬ +β β€ π΄) |
10 | simprr 770 | . . . . 5 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β€ π΄) | |
11 | breq1 5142 | . . . . 5 β’ ((π Ramsey πΉ) = +β β ((π Ramsey πΉ) β€ π΄ β +β β€ π΄)) | |
12 | 10, 11 | syl5ibcom 244 | . . . 4 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β ((π Ramsey πΉ) = +β β +β β€ π΄)) |
13 | 9, 12 | mtod 197 | . . 3 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β Β¬ (π Ramsey πΉ) = +β) |
14 | elsni 4638 | . . 3 β’ ((π Ramsey πΉ) β {+β} β (π Ramsey πΉ) = +β) | |
15 | 13, 14 | nsyl 140 | . 2 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β Β¬ (π Ramsey πΉ) β {+β}) |
16 | ramcl2 16954 | . . . . 5 β’ ((π β β0 β§ π β π β§ πΉ:π βΆβ0) β (π Ramsey πΉ) β (β0 βͺ {+β})) | |
17 | 16 | adantr 480 | . . . 4 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β (β0 βͺ {+β})) |
18 | elun 4141 | . . . 4 β’ ((π Ramsey πΉ) β (β0 βͺ {+β}) β ((π Ramsey πΉ) β β0 β¨ (π Ramsey πΉ) β {+β})) | |
19 | 17, 18 | sylib 217 | . . 3 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β ((π Ramsey πΉ) β β0 β¨ (π Ramsey πΉ) β {+β})) |
20 | 19 | ord 861 | . 2 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (Β¬ (π Ramsey πΉ) β β0 β (π Ramsey πΉ) β {+β})) |
21 | 15, 20 | mt3d 148 | 1 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β β0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β¨ wo 844 β§ w3a 1084 = wceq 1533 β wcel 2098 βͺ cun 3939 {csn 4621 class class class wbr 5139 βΆwf 6530 (class class class)co 7402 βcr 11106 +βcpnf 11244 β*cxr 11246 < clt 11247 β€ cle 11248 β0cn0 12471 Ramsey cram 16937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-ram 16939 |
This theorem is referenced by: ramlb 16957 0ram 16958 ram0 16960 ramz2 16962 ramcl 16967 |
Copyright terms: Public domain | W3C validator |