![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramubcl | Structured version Visualization version GIF version |
Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
ramubcl | β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β β0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12481 | . . . . . 6 β’ (π΄ β β0 β π΄ β β) | |
2 | ltpnf 13100 | . . . . . . 7 β’ (π΄ β β β π΄ < +β) | |
3 | rexr 11260 | . . . . . . . 8 β’ (π΄ β β β π΄ β β*) | |
4 | pnfxr 11268 | . . . . . . . 8 β’ +β β β* | |
5 | xrltnle 11281 | . . . . . . . 8 β’ ((π΄ β β* β§ +β β β*) β (π΄ < +β β Β¬ +β β€ π΄)) | |
6 | 3, 4, 5 | sylancl 587 | . . . . . . 7 β’ (π΄ β β β (π΄ < +β β Β¬ +β β€ π΄)) |
7 | 2, 6 | mpbid 231 | . . . . . 6 β’ (π΄ β β β Β¬ +β β€ π΄) |
8 | 1, 7 | syl 17 | . . . . 5 β’ (π΄ β β0 β Β¬ +β β€ π΄) |
9 | 8 | ad2antrl 727 | . . . 4 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β Β¬ +β β€ π΄) |
10 | simprr 772 | . . . . 5 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β€ π΄) | |
11 | breq1 5152 | . . . . 5 β’ ((π Ramsey πΉ) = +β β ((π Ramsey πΉ) β€ π΄ β +β β€ π΄)) | |
12 | 10, 11 | syl5ibcom 244 | . . . 4 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β ((π Ramsey πΉ) = +β β +β β€ π΄)) |
13 | 9, 12 | mtod 197 | . . 3 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β Β¬ (π Ramsey πΉ) = +β) |
14 | elsni 4646 | . . 3 β’ ((π Ramsey πΉ) β {+β} β (π Ramsey πΉ) = +β) | |
15 | 13, 14 | nsyl 140 | . 2 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β Β¬ (π Ramsey πΉ) β {+β}) |
16 | ramcl2 16949 | . . . . 5 β’ ((π β β0 β§ π β π β§ πΉ:π βΆβ0) β (π Ramsey πΉ) β (β0 βͺ {+β})) | |
17 | 16 | adantr 482 | . . . 4 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β (β0 βͺ {+β})) |
18 | elun 4149 | . . . 4 β’ ((π Ramsey πΉ) β (β0 βͺ {+β}) β ((π Ramsey πΉ) β β0 β¨ (π Ramsey πΉ) β {+β})) | |
19 | 17, 18 | sylib 217 | . . 3 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β ((π Ramsey πΉ) β β0 β¨ (π Ramsey πΉ) β {+β})) |
20 | 19 | ord 863 | . 2 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (Β¬ (π Ramsey πΉ) β β0 β (π Ramsey πΉ) β {+β})) |
21 | 15, 20 | mt3d 148 | 1 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ (π΄ β β0 β§ (π Ramsey πΉ) β€ π΄)) β (π Ramsey πΉ) β β0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 β¨ wo 846 β§ w3a 1088 = wceq 1542 β wcel 2107 βͺ cun 3947 {csn 4629 class class class wbr 5149 βΆwf 6540 (class class class)co 7409 βcr 11109 +βcpnf 11245 β*cxr 11247 < clt 11248 β€ cle 11249 β0cn0 12472 Ramsey cram 16932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-ram 16934 |
This theorem is referenced by: ramlb 16952 0ram 16953 ram0 16955 ramz2 16957 ramcl 16962 |
Copyright terms: Public domain | W3C validator |