| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ramubcl | Structured version Visualization version GIF version | ||
| Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| ramubcl | ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12518 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 2 | ltpnf 13144 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 3 | rexr 11289 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | pnfxr 11297 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 5 | xrltnle 11310 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴)) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴)) |
| 7 | 2, 6 | mpbid 232 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴) |
| 9 | 8 | ad2antrl 728 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ +∞ ≤ 𝐴) |
| 10 | simprr 772 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ≤ 𝐴) | |
| 11 | breq1 5126 | . . . . 5 ⊢ ((𝑀 Ramsey 𝐹) = +∞ → ((𝑀 Ramsey 𝐹) ≤ 𝐴 ↔ +∞ ≤ 𝐴)) | |
| 12 | 10, 11 | syl5ibcom 245 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) = +∞ → +∞ ≤ 𝐴)) |
| 13 | 9, 12 | mtod 198 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) = +∞) |
| 14 | elsni 4623 | . . 3 ⊢ ((𝑀 Ramsey 𝐹) ∈ {+∞} → (𝑀 Ramsey 𝐹) = +∞) | |
| 15 | 13, 14 | nsyl 140 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) ∈ {+∞}) |
| 16 | ramcl2 17037 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞})) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞})) |
| 18 | elun 4133 | . . . 4 ⊢ ((𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}) ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞})) | |
| 19 | 17, 18 | sylib 218 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞})) |
| 20 | 19 | ord 864 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (¬ (𝑀 Ramsey 𝐹) ∈ ℕ0 → (𝑀 Ramsey 𝐹) ∈ {+∞})) |
| 21 | 15, 20 | mt3d 148 | 1 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 {csn 4606 class class class wbr 5123 ⟶wf 6537 (class class class)co 7413 ℝcr 11136 +∞cpnf 11274 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 ℕ0cn0 12509 Ramsey cram 17020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-ram 17022 |
| This theorem is referenced by: ramlb 17040 0ram 17041 ram0 17043 ramz2 17045 ramcl 17050 |
| Copyright terms: Public domain | W3C validator |