MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramubcl Structured version   Visualization version   GIF version

Theorem ramubcl 16126
Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
ramubcl (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem ramubcl
StepHypRef Expression
1 nn0re 11652 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 ltpnf 12265 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 < +∞)
3 rexr 10422 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10430 . . . . . . . 8 +∞ ∈ ℝ*
5 xrltnle 10444 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
63, 4, 5sylancl 580 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
72, 6mpbid 224 . . . . . 6 (𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴)
81, 7syl 17 . . . . 5 (𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴)
98ad2antrl 718 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ +∞ ≤ 𝐴)
10 simprr 763 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ≤ 𝐴)
11 breq1 4889 . . . . 5 ((𝑀 Ramsey 𝐹) = +∞ → ((𝑀 Ramsey 𝐹) ≤ 𝐴 ↔ +∞ ≤ 𝐴))
1210, 11syl5ibcom 237 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) = +∞ → +∞ ≤ 𝐴))
139, 12mtod 190 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) = +∞)
14 elsni 4415 . . 3 ((𝑀 Ramsey 𝐹) ∈ {+∞} → (𝑀 Ramsey 𝐹) = +∞)
1513, 14nsyl 138 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) ∈ {+∞})
16 ramcl2 16124 . . . . 5 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
1716adantr 474 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
18 elun 3976 . . . 4 ((𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}) ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
1917, 18sylib 210 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
2019ord 853 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (¬ (𝑀 Ramsey 𝐹) ∈ ℕ0 → (𝑀 Ramsey 𝐹) ∈ {+∞}))
2115, 20mt3d 143 1 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  cun 3790  {csn 4398   class class class wbr 4886  wf 6131  (class class class)co 6922  cr 10271  +∞cpnf 10408  *cxr 10410   < clt 10411  cle 10412  0cn0 11642   Ramsey cram 16107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-ram 16109
This theorem is referenced by:  ramlb  16127  0ram  16128  ram0  16130  ramz2  16132  ramcl  16137
  Copyright terms: Public domain W3C validator