MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramubcl Structured version   Visualization version   GIF version

Theorem ramubcl 16344
Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
ramubcl (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem ramubcl
StepHypRef Expression
1 nn0re 11894 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 ltpnf 12503 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 < +∞)
3 rexr 10676 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10684 . . . . . . . 8 +∞ ∈ ℝ*
5 xrltnle 10697 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
63, 4, 5sylancl 589 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
72, 6mpbid 235 . . . . . 6 (𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴)
81, 7syl 17 . . . . 5 (𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴)
98ad2antrl 727 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ +∞ ≤ 𝐴)
10 simprr 772 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ≤ 𝐴)
11 breq1 5033 . . . . 5 ((𝑀 Ramsey 𝐹) = +∞ → ((𝑀 Ramsey 𝐹) ≤ 𝐴 ↔ +∞ ≤ 𝐴))
1210, 11syl5ibcom 248 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) = +∞ → +∞ ≤ 𝐴))
139, 12mtod 201 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) = +∞)
14 elsni 4542 . . 3 ((𝑀 Ramsey 𝐹) ∈ {+∞} → (𝑀 Ramsey 𝐹) = +∞)
1513, 14nsyl 142 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) ∈ {+∞})
16 ramcl2 16342 . . . . 5 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
1716adantr 484 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
18 elun 4076 . . . 4 ((𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}) ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
1917, 18sylib 221 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
2019ord 861 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (¬ (𝑀 Ramsey 𝐹) ∈ ℕ0 → (𝑀 Ramsey 𝐹) ∈ {+∞}))
2115, 20mt3d 150 1 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  cun 3879  {csn 4525   class class class wbr 5030  wf 6320  (class class class)co 7135  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  0cn0 11885   Ramsey cram 16325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-ram 16327
This theorem is referenced by:  ramlb  16345  0ram  16346  ram0  16348  ramz2  16350  ramcl  16355
  Copyright terms: Public domain W3C validator