MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramubcl Structured version   Visualization version   GIF version

Theorem ramubcl 17039
Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
ramubcl (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem ramubcl
StepHypRef Expression
1 nn0re 12518 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 ltpnf 13144 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 < +∞)
3 rexr 11289 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 11297 . . . . . . . 8 +∞ ∈ ℝ*
5 xrltnle 11310 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
63, 4, 5sylancl 586 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
72, 6mpbid 232 . . . . . 6 (𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴)
81, 7syl 17 . . . . 5 (𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴)
98ad2antrl 728 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ +∞ ≤ 𝐴)
10 simprr 772 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ≤ 𝐴)
11 breq1 5126 . . . . 5 ((𝑀 Ramsey 𝐹) = +∞ → ((𝑀 Ramsey 𝐹) ≤ 𝐴 ↔ +∞ ≤ 𝐴))
1210, 11syl5ibcom 245 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) = +∞ → +∞ ≤ 𝐴))
139, 12mtod 198 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) = +∞)
14 elsni 4623 . . 3 ((𝑀 Ramsey 𝐹) ∈ {+∞} → (𝑀 Ramsey 𝐹) = +∞)
1513, 14nsyl 140 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) ∈ {+∞})
16 ramcl2 17037 . . . . 5 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
1716adantr 480 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
18 elun 4133 . . . 4 ((𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}) ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
1917, 18sylib 218 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
2019ord 864 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (¬ (𝑀 Ramsey 𝐹) ∈ ℕ0 → (𝑀 Ramsey 𝐹) ∈ {+∞}))
2115, 20mt3d 148 1 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  cun 3929  {csn 4606   class class class wbr 5123  wf 6537  (class class class)co 7413  cr 11136  +∞cpnf 11274  *cxr 11276   < clt 11277  cle 11278  0cn0 12509   Ramsey cram 17020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-ram 17022
This theorem is referenced by:  ramlb  17040  0ram  17041  ram0  17043  ramz2  17045  ramcl  17050
  Copyright terms: Public domain W3C validator