Proof of Theorem odnncl
Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐴 ∈ 𝑋) |
2 | | simprl 767 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ≠ 0) |
3 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈
ℤ) |
4 | 3 | zcnd 12356 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈
ℂ) |
5 | | abs00 14929 |
. . . . . . 7
⊢ (𝑁 ∈ ℂ →
((abs‘𝑁) = 0 ↔
𝑁 = 0)) |
6 | 5 | necon3bbid 2980 |
. . . . . 6
⊢ (𝑁 ∈ ℂ → (¬
(abs‘𝑁) = 0 ↔
𝑁 ≠ 0)) |
7 | 4, 6 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬
(abs‘𝑁) = 0 ↔
𝑁 ≠ 0)) |
8 | 2, 7 | mpbird 256 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ¬
(abs‘𝑁) =
0) |
9 | | nn0abscl 14952 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) |
10 | 3, 9 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈
ℕ0) |
11 | | elnn0 12165 |
. . . . . 6
⊢
((abs‘𝑁)
∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0)) |
12 | 10, 11 | sylib 217 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) ∈
ℕ ∨ (abs‘𝑁)
= 0)) |
13 | 12 | ord 860 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬
(abs‘𝑁) ∈
ℕ → (abs‘𝑁) = 0)) |
14 | 8, 13 | mt3d 148 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈
ℕ) |
15 | | simprr 769 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 ) |
16 | | oveq1 7262 |
. . . . . 6
⊢
((abs‘𝑁) =
𝑁 → ((abs‘𝑁) · 𝐴) = (𝑁 · 𝐴)) |
17 | 16 | eqeq1d 2740 |
. . . . 5
⊢
((abs‘𝑁) =
𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
18 | 15, 17 | syl5ibrcom 246 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = 0 )) |
19 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐺 ∈ Grp) |
20 | | odcl.1 |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
21 | | odid.3 |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
22 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
23 | 20, 21, 22 | mulgneg 18637 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (-𝑁 · 𝐴) = ((invg‘𝐺)‘(𝑁 · 𝐴))) |
24 | 19, 3, 1, 23 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = ((invg‘𝐺)‘(𝑁 · 𝐴))) |
25 | 15 | fveq2d 6760 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((invg‘𝐺)‘(𝑁 · 𝐴)) = ((invg‘𝐺)‘ 0 )) |
26 | | odid.4 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
27 | 26, 22 | grpinvid 18551 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
((invg‘𝐺)‘ 0 ) = 0 ) |
28 | 19, 27 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((invg‘𝐺)‘ 0 ) = 0 ) |
29 | 24, 25, 28 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = 0 ) |
30 | | oveq1 7262 |
. . . . . 6
⊢
((abs‘𝑁) =
-𝑁 → ((abs‘𝑁) · 𝐴) = (-𝑁 · 𝐴)) |
31 | 30 | eqeq1d 2740 |
. . . . 5
⊢
((abs‘𝑁) =
-𝑁 →
(((abs‘𝑁) · 𝐴) = 0 ↔ (-𝑁 · 𝐴) = 0 )) |
32 | 29, 31 | syl5ibrcom 246 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = 0 )) |
33 | 3 | zred 12355 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈
ℝ) |
34 | 33 | absord 15055 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) |
35 | 18, 32, 34 | mpjaod 856 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) · 𝐴) = 0 ) |
36 | | odcl.2 |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
37 | 20, 36, 21, 26 | odlem2 19062 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ (abs‘𝑁) ∈ ℕ ∧ ((abs‘𝑁) · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...(abs‘𝑁))) |
38 | 1, 14, 35, 37 | syl3anc 1369 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ (1...(abs‘𝑁))) |
39 | | elfznn 13214 |
. 2
⊢ ((𝑂‘𝐴) ∈ (1...(abs‘𝑁)) → (𝑂‘𝐴) ∈ ℕ) |
40 | 38, 39 | syl 17 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ ℕ) |