MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odnncl Structured version   Visualization version   GIF version

Theorem odnncl 18170
Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odnncl (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)

Proof of Theorem odnncl
StepHypRef Expression
1 simpl2 1229 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐴𝑋)
2 simprl 754 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ≠ 0)
3 simpl3 1231 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℤ)
43zcnd 11689 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℂ)
5 abs00 14236 . . . . . . 7 (𝑁 ∈ ℂ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
65necon3bbid 2980 . . . . . 6 (𝑁 ∈ ℂ → (¬ (abs‘𝑁) = 0 ↔ 𝑁 ≠ 0))
74, 6syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬ (abs‘𝑁) = 0 ↔ 𝑁 ≠ 0))
82, 7mpbird 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ¬ (abs‘𝑁) = 0)
9 nn0abscl 14259 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
103, 9syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈ ℕ0)
11 elnn0 11500 . . . . . 6 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
1210, 11sylib 208 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
1312ord 853 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
148, 13mt3d 142 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈ ℕ)
15 simprr 756 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
16 oveq1 6802 . . . . . 6 ((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = (𝑁 · 𝐴))
1716eqeq1d 2773 . . . . 5 ((abs‘𝑁) = 𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
1815, 17syl5ibrcom 237 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = 0 ))
19 simpl1 1227 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐺 ∈ Grp)
20 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
21 odid.3 . . . . . . . 8 · = (.g𝐺)
22 eqid 2771 . . . . . . . 8 (invg𝐺) = (invg𝐺)
2320, 21, 22mulgneg 17767 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (-𝑁 · 𝐴) = ((invg𝐺)‘(𝑁 · 𝐴)))
2419, 3, 1, 23syl3anc 1476 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = ((invg𝐺)‘(𝑁 · 𝐴)))
2515fveq2d 6337 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((invg𝐺)‘(𝑁 · 𝐴)) = ((invg𝐺)‘ 0 ))
26 odid.4 . . . . . . . 8 0 = (0g𝐺)
2726, 22grpinvid 17683 . . . . . . 7 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2819, 27syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((invg𝐺)‘ 0 ) = 0 )
2924, 25, 283eqtrd 2809 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = 0 )
30 oveq1 6802 . . . . . 6 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = (-𝑁 · 𝐴))
3130eqeq1d 2773 . . . . 5 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (-𝑁 · 𝐴) = 0 ))
3229, 31syl5ibrcom 237 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = 0 ))
333zred 11688 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℝ)
3433absord 14361 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
3518, 32, 34mpjaod 849 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) · 𝐴) = 0 )
36 odcl.2 . . . 4 𝑂 = (od‘𝐺)
3720, 36, 21, 26odlem2 18164 . . 3 ((𝐴𝑋 ∧ (abs‘𝑁) ∈ ℕ ∧ ((abs‘𝑁) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(abs‘𝑁)))
381, 14, 35, 37syl3anc 1476 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...(abs‘𝑁)))
39 elfznn 12576 . 2 ((𝑂𝐴) ∈ (1...(abs‘𝑁)) → (𝑂𝐴) ∈ ℕ)
4038, 39syl 17 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cfv 6030  (class class class)co 6795  cc 10139  0cc0 10141  1c1 10142  -cneg 10472  cn 11225  0cn0 11498  cz 11583  ...cfz 12532  abscabs 14181  Basecbs 16063  0gc0g 16307  Grpcgrp 17629  invgcminusg 17630  .gcmg 17747  odcod 18150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-mulg 17748  df-od 18154
This theorem is referenced by:  oddvds  18172
  Copyright terms: Public domain W3C validator