Proof of Theorem odnncl
| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1193 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐴 ∈ 𝑋) |
| 2 | | simprl 771 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ≠ 0) |
| 3 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈
ℤ) |
| 4 | 3 | zcnd 12723 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈
ℂ) |
| 5 | | abs00 15328 |
. . . . . . 7
⊢ (𝑁 ∈ ℂ →
((abs‘𝑁) = 0 ↔
𝑁 = 0)) |
| 6 | 5 | necon3bbid 2978 |
. . . . . 6
⊢ (𝑁 ∈ ℂ → (¬
(abs‘𝑁) = 0 ↔
𝑁 ≠ 0)) |
| 7 | 4, 6 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬
(abs‘𝑁) = 0 ↔
𝑁 ≠ 0)) |
| 8 | 2, 7 | mpbird 257 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ¬
(abs‘𝑁) =
0) |
| 9 | | nn0abscl 15351 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) |
| 10 | 3, 9 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈
ℕ0) |
| 11 | | elnn0 12528 |
. . . . . 6
⊢
((abs‘𝑁)
∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0)) |
| 12 | 10, 11 | sylib 218 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) ∈
ℕ ∨ (abs‘𝑁)
= 0)) |
| 13 | 12 | ord 865 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬
(abs‘𝑁) ∈
ℕ → (abs‘𝑁) = 0)) |
| 14 | 8, 13 | mt3d 148 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈
ℕ) |
| 15 | | simprr 773 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 ) |
| 16 | | oveq1 7438 |
. . . . . 6
⊢
((abs‘𝑁) =
𝑁 → ((abs‘𝑁) · 𝐴) = (𝑁 · 𝐴)) |
| 17 | 16 | eqeq1d 2739 |
. . . . 5
⊢
((abs‘𝑁) =
𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
| 18 | 15, 17 | syl5ibrcom 247 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = 0 )) |
| 19 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐺 ∈ Grp) |
| 20 | | odcl.1 |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
| 21 | | odid.3 |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
| 22 | | eqid 2737 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 23 | 20, 21, 22 | mulgneg 19110 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (-𝑁 · 𝐴) = ((invg‘𝐺)‘(𝑁 · 𝐴))) |
| 24 | 19, 3, 1, 23 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = ((invg‘𝐺)‘(𝑁 · 𝐴))) |
| 25 | 15 | fveq2d 6910 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((invg‘𝐺)‘(𝑁 · 𝐴)) = ((invg‘𝐺)‘ 0 )) |
| 26 | | odid.4 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
| 27 | 26, 22 | grpinvid 19017 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
((invg‘𝐺)‘ 0 ) = 0 ) |
| 28 | 19, 27 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((invg‘𝐺)‘ 0 ) = 0 ) |
| 29 | 24, 25, 28 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = 0 ) |
| 30 | | oveq1 7438 |
. . . . . 6
⊢
((abs‘𝑁) =
-𝑁 → ((abs‘𝑁) · 𝐴) = (-𝑁 · 𝐴)) |
| 31 | 30 | eqeq1d 2739 |
. . . . 5
⊢
((abs‘𝑁) =
-𝑁 →
(((abs‘𝑁) · 𝐴) = 0 ↔ (-𝑁 · 𝐴) = 0 )) |
| 32 | 29, 31 | syl5ibrcom 247 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = 0 )) |
| 33 | 3 | zred 12722 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈
ℝ) |
| 34 | 33 | absord 15454 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) |
| 35 | 18, 32, 34 | mpjaod 861 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) →
((abs‘𝑁) · 𝐴) = 0 ) |
| 36 | | odcl.2 |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
| 37 | 20, 36, 21, 26 | odlem2 19557 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ (abs‘𝑁) ∈ ℕ ∧ ((abs‘𝑁) · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...(abs‘𝑁))) |
| 38 | 1, 14, 35, 37 | syl3anc 1373 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ (1...(abs‘𝑁))) |
| 39 | | elfznn 13593 |
. 2
⊢ ((𝑂‘𝐴) ∈ (1...(abs‘𝑁)) → (𝑂‘𝐴) ∈ ℕ) |
| 40 | 38, 39 | syl 17 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ ℕ) |