MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odnncl Structured version   Visualization version   GIF version

Theorem odnncl 19327
Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odnncl (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)

Proof of Theorem odnncl
StepHypRef Expression
1 simpl2 1192 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐴𝑋)
2 simprl 769 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ≠ 0)
3 simpl3 1193 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℤ)
43zcnd 12608 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℂ)
5 abs00 15174 . . . . . . 7 (𝑁 ∈ ℂ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
65necon3bbid 2981 . . . . . 6 (𝑁 ∈ ℂ → (¬ (abs‘𝑁) = 0 ↔ 𝑁 ≠ 0))
74, 6syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬ (abs‘𝑁) = 0 ↔ 𝑁 ≠ 0))
82, 7mpbird 256 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ¬ (abs‘𝑁) = 0)
9 nn0abscl 15197 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
103, 9syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈ ℕ0)
11 elnn0 12415 . . . . . 6 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
1210, 11sylib 217 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
1312ord 862 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
148, 13mt3d 148 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (abs‘𝑁) ∈ ℕ)
15 simprr 771 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
16 oveq1 7364 . . . . . 6 ((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = (𝑁 · 𝐴))
1716eqeq1d 2738 . . . . 5 ((abs‘𝑁) = 𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
1815, 17syl5ibrcom 246 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = 𝑁 → ((abs‘𝑁) · 𝐴) = 0 ))
19 simpl1 1191 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝐺 ∈ Grp)
20 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
21 odid.3 . . . . . . . 8 · = (.g𝐺)
22 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
2320, 21, 22mulgneg 18894 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (-𝑁 · 𝐴) = ((invg𝐺)‘(𝑁 · 𝐴)))
2419, 3, 1, 23syl3anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = ((invg𝐺)‘(𝑁 · 𝐴)))
2515fveq2d 6846 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((invg𝐺)‘(𝑁 · 𝐴)) = ((invg𝐺)‘ 0 ))
26 odid.4 . . . . . . . 8 0 = (0g𝐺)
2726, 22grpinvid 18808 . . . . . . 7 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2819, 27syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((invg𝐺)‘ 0 ) = 0 )
2924, 25, 283eqtrd 2780 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (-𝑁 · 𝐴) = 0 )
30 oveq1 7364 . . . . . 6 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = (-𝑁 · 𝐴))
3130eqeq1d 2738 . . . . 5 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝐴) = 0 ↔ (-𝑁 · 𝐴) = 0 ))
3229, 31syl5ibrcom 246 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝐴) = 0 ))
333zred 12607 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → 𝑁 ∈ ℝ)
3433absord 15300 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
3518, 32, 34mpjaod 858 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → ((abs‘𝑁) · 𝐴) = 0 )
36 odcl.2 . . . 4 𝑂 = (od‘𝐺)
3720, 36, 21, 26odlem2 19321 . . 3 ((𝐴𝑋 ∧ (abs‘𝑁) ∈ ℕ ∧ ((abs‘𝑁) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(abs‘𝑁)))
381, 14, 35, 37syl3anc 1371 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...(abs‘𝑁)))
39 elfznn 13470 . 2 ((𝑂𝐴) ∈ (1...(abs‘𝑁)) → (𝑂𝐴) ∈ ℕ)
4038, 39syl 17 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  -cneg 11386  cn 12153  0cn0 12413  cz 12499  ...cfz 13424  abscabs 15119  Basecbs 17083  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  .gcmg 18872  odcod 19306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mulg 18873  df-od 19310
This theorem is referenced by:  oddvds  19329
  Copyright terms: Public domain W3C validator