MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzo Structured version   Visualization version   GIF version

Theorem bitsfzo 16472
Description: The bits of a number are all less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
bitsfzo ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))

Proof of Theorem bitsfzo
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsval 16461 . . . 4 (𝑚 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 simp32 1211 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ ℕ0)
3 nn0uz 12920 . . . . . . 7 0 = (ℤ‘0)
42, 3eleqtrdi 2851 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ (ℤ‘0))
5 simp1r 1199 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑀 ∈ ℕ0)
65nn0zd 12639 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑀 ∈ ℤ)
7 2re 12340 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℝ)
98, 2reexpcld 14203 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℝ)
10 simp1l 1198 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 ∈ ℤ)
1110zred 12722 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 ∈ ℝ)
128, 5reexpcld 14203 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑀) ∈ ℝ)
139recnd 11289 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℂ)
1413mullidd 11279 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (1 · (2↑𝑚)) = (2↑𝑚))
15 simp33 1212 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))
16 2rp 13039 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
1716a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℝ+)
182nn0zd 12639 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ ℤ)
1917, 18rpexpcld 14286 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℝ+)
2011, 19rerpdivcld 13108 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (𝑁 / (2↑𝑚)) ∈ ℝ)
21 1red 11262 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ∈ ℝ)
2220, 21ltnled 11408 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < 1 ↔ ¬ 1 ≤ (𝑁 / (2↑𝑚))))
23 0p1e1 12388 . . . . . . . . . . . . . 14 (0 + 1) = 1
2423breq2i 5151 . . . . . . . . . . . . 13 ((𝑁 / (2↑𝑚)) < (0 + 1) ↔ (𝑁 / (2↑𝑚)) < 1)
25 elfzole1 13707 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0..^(2↑𝑀)) → 0 ≤ 𝑁)
26253ad2ant2 1135 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 0 ≤ 𝑁)
2711, 19, 26divge0d 13117 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 0 ≤ (𝑁 / (2↑𝑚)))
28 0z 12624 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
29 flbi 13856 . . . . . . . . . . . . . . . 16 (((𝑁 / (2↑𝑚)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (2↑𝑚))) = 0 ↔ (0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1))))
3020, 28, 29sylancl 586 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((⌊‘(𝑁 / (2↑𝑚))) = 0 ↔ (0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1))))
31 z0even 16404 . . . . . . . . . . . . . . . 16 2 ∥ 0
32 id 22 . . . . . . . . . . . . . . . 16 ((⌊‘(𝑁 / (2↑𝑚))) = 0 → (⌊‘(𝑁 / (2↑𝑚))) = 0)
3331, 32breqtrrid 5181 . . . . . . . . . . . . . . 15 ((⌊‘(𝑁 / (2↑𝑚))) = 0 → 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))
3430, 33biimtrrdi 254 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1)) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3527, 34mpand 695 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < (0 + 1) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3624, 35biimtrrid 243 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < 1 → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3722, 36sylbird 260 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (¬ 1 ≤ (𝑁 / (2↑𝑚)) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3815, 37mt3d 148 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ≤ (𝑁 / (2↑𝑚)))
3921, 11, 19lemuldivd 13126 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((1 · (2↑𝑚)) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑𝑚))))
4038, 39mpbird 257 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (1 · (2↑𝑚)) ≤ 𝑁)
4114, 40eqbrtrrd 5167 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ≤ 𝑁)
42 elfzolt2 13708 . . . . . . . . 9 (𝑁 ∈ (0..^(2↑𝑀)) → 𝑁 < (2↑𝑀))
43423ad2ant2 1135 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 < (2↑𝑀))
449, 11, 12, 41, 43lelttrd 11419 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) < (2↑𝑀))
45 1lt2 12437 . . . . . . . . 9 1 < 2
4645a1i 11 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 < 2)
478, 18, 6, 46ltexp2d 14290 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (𝑚 < 𝑀 ↔ (2↑𝑚) < (2↑𝑀)))
4844, 47mpbird 257 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 < 𝑀)
49 elfzo2 13702 . . . . . 6 (𝑚 ∈ (0..^𝑀) ↔ (𝑚 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑚 < 𝑀))
504, 6, 48, 49syl3anbrc 1344 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ (0..^𝑀))
51503expia 1122 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))) → 𝑚 ∈ (0..^𝑀)))
521, 51biimtrid 242 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → (𝑚 ∈ (bits‘𝑁) → 𝑚 ∈ (0..^𝑀)))
5352ssrdv 3989 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → (bits‘𝑁) ⊆ (0..^𝑀))
54 simpr 484 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
5554nnred 12281 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℝ)
56 simpllr 776 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
5756nn0red 12588 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
58 max2 13229 . . . . . . 7 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
5955, 57, 58syl2anc 584 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
60 simplr 769 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (bits‘𝑁) ⊆ (0..^𝑀))
61 n2dvdsm1 16406 . . . . . . . . . . 11 ¬ 2 ∥ -1
62 simplll 775 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
6362zred 12722 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
64 2nn 12339 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
6564a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ∈ ℕ)
6654nnnn0d 12587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0)
6756, 66ifcld 4572 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℕ0)
6865, 67nnexpcld 14284 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℕ)
6963, 68nndivred 12320 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∈ ℝ)
70 1red 11262 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
7162zcnd 12723 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
7268nncnd 12282 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℂ)
73 2cnd 12344 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ∈ ℂ)
74 2ne0 12370 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ≠ 0)
7667nn0zd 12639 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℤ)
7773, 75, 76expne0d 14192 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ≠ 0)
7871, 72, 77divnegd 12056 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) = (-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
7967nn0red 12588 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℝ)
8068nnred 12281 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℝ)
81 max1 13227 . . . . . . . . . . . . . . . . . . 19 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → -𝑁 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
8255, 57, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
83 2z 12649 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
84 uzid 12893 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
8583, 84ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
86 bernneq3 14270 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℕ0) → if(-𝑁𝑀, 𝑀, -𝑁) < (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
8785, 67, 86sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) < (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
8879, 80, 87ltled 11409 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ≤ (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
8955, 79, 80, 82, 88letrd 11418 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
9072mulridd 11278 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((2↑if(-𝑁𝑀, 𝑀, -𝑁)) · 1) = (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
9189, 90breqtrrd 5171 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ ((2↑if(-𝑁𝑀, 𝑀, -𝑁)) · 1))
9268nnrpd 13075 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℝ+)
9355, 70, 92ledivmuld 13130 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ≤ 1 ↔ -𝑁 ≤ ((2↑if(-𝑁𝑀, 𝑀, -𝑁)) · 1)))
9491, 93mpbird 257 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ≤ 1)
9578, 94eqbrtrd 5165 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ≤ 1)
9669, 70, 95lenegcon1d 11845 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -1 ≤ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
9754nngt0d 12315 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < -𝑁)
9868nngt0d 12315 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
9955, 80, 97, 98divgt0d 12203 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < (-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
10099, 78breqtrrd 5171 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
10169lt0neg1d 11832 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < 0 ↔ 0 < -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))))
102100, 101mpbird 257 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < 0)
103 ax-1cn 11213 . . . . . . . . . . . . . . 15 1 ∈ ℂ
104 neg1cn 12380 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
105 1pneg1e0 12385 . . . . . . . . . . . . . . 15 (1 + -1) = 0
106103, 104, 105addcomli 11453 . . . . . . . . . . . . . 14 (-1 + 1) = 0
107102, 106breqtrrdi 5185 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < (-1 + 1))
108 neg1z 12653 . . . . . . . . . . . . . 14 -1 ∈ ℤ
109 flbi 13856 . . . . . . . . . . . . . 14 (((𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∈ ℝ ∧ -1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) = -1 ↔ (-1 ≤ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∧ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < (-1 + 1))))
11069, 108, 109sylancl 586 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) = -1 ↔ (-1 ≤ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∧ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < (-1 + 1))))
11196, 107, 110mpbir2and 713 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) = -1)
112111breq2d 5155 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) ↔ 2 ∥ -1))
11361, 112mtbiri 327 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))))
114 bitsval2 16462 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℕ0) → (if(-𝑁𝑀, 𝑀, -𝑁) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))))
11562, 67, 114syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (if(-𝑁𝑀, 𝑀, -𝑁) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))))
116113, 115mpbird 257 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ (bits‘𝑁))
11760, 116sseldd 3984 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ (0..^𝑀))
118 elfzolt2 13708 . . . . . . . 8 (if(-𝑁𝑀, 𝑀, -𝑁) ∈ (0..^𝑀) → if(-𝑁𝑀, 𝑀, -𝑁) < 𝑀)
119117, 118syl 17 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) < 𝑀)
12079, 57ltnled 11408 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (if(-𝑁𝑀, 𝑀, -𝑁) < 𝑀 ↔ ¬ 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁)))
121119, 120mpbid 232 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ¬ 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
12259, 121pm2.65da 817 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → ¬ -𝑁 ∈ ℕ)
123122intnand 488 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → ¬ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))
124 simpll 767 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ ℤ)
125 elznn0nn 12627 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
126124, 125sylib 218 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
127126ord 865 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (¬ 𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
128123, 127mt3d 148 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ ℕ0)
129 simplr 769 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑀 ∈ ℕ0)
130 simpr 484 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (bits‘𝑁) ⊆ (0..^𝑀))
131 eqid 2737 . . 3 inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
132128, 129, 130, 131bitsfzolem 16471 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ (0..^(2↑𝑀)))
13353, 132impbida 801 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ..^cfzo 13694  cfl 13830  cexp 14102  cdvds 16290  bitscbits 16456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-dvds 16291  df-bits 16459
This theorem is referenced by:  bitsfi  16474  0bits  16476  bitsinv1  16479  sadcaddlem  16494  sadaddlem  16503  sadasslem  16507  sadeq  16509
  Copyright terms: Public domain W3C validator