MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzo Structured version   Visualization version   GIF version

Theorem bitsfzo 16435
Description: The bits of a number are all less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
bitsfzo ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))

Proof of Theorem bitsfzo
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsval 16424 . . . 4 (𝑚 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 simp32 1207 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ ℕ0)
3 nn0uz 12916 . . . . . . 7 0 = (ℤ‘0)
42, 3eleqtrdi 2836 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ (ℤ‘0))
5 simp1r 1195 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑀 ∈ ℕ0)
65nn0zd 12636 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑀 ∈ ℤ)
7 2re 12338 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℝ)
98, 2reexpcld 14182 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℝ)
10 simp1l 1194 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 ∈ ℤ)
1110zred 12718 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 ∈ ℝ)
128, 5reexpcld 14182 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑀) ∈ ℝ)
139recnd 11292 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℂ)
1413mullidd 11282 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (1 · (2↑𝑚)) = (2↑𝑚))
15 simp33 1208 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))
16 2rp 13033 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
1716a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 2 ∈ ℝ+)
182nn0zd 12636 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ ℤ)
1917, 18rpexpcld 14264 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ∈ ℝ+)
2011, 19rerpdivcld 13101 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (𝑁 / (2↑𝑚)) ∈ ℝ)
21 1red 11265 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ∈ ℝ)
2220, 21ltnled 11411 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < 1 ↔ ¬ 1 ≤ (𝑁 / (2↑𝑚))))
23 0p1e1 12386 . . . . . . . . . . . . . 14 (0 + 1) = 1
2423breq2i 5161 . . . . . . . . . . . . 13 ((𝑁 / (2↑𝑚)) < (0 + 1) ↔ (𝑁 / (2↑𝑚)) < 1)
25 elfzole1 13694 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0..^(2↑𝑀)) → 0 ≤ 𝑁)
26253ad2ant2 1131 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 0 ≤ 𝑁)
2711, 19, 26divge0d 13110 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 0 ≤ (𝑁 / (2↑𝑚)))
28 0z 12621 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
29 flbi 13836 . . . . . . . . . . . . . . . 16 (((𝑁 / (2↑𝑚)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (2↑𝑚))) = 0 ↔ (0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1))))
3020, 28, 29sylancl 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((⌊‘(𝑁 / (2↑𝑚))) = 0 ↔ (0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1))))
31 z0even 16369 . . . . . . . . . . . . . . . 16 2 ∥ 0
32 id 22 . . . . . . . . . . . . . . . 16 ((⌊‘(𝑁 / (2↑𝑚))) = 0 → (⌊‘(𝑁 / (2↑𝑚))) = 0)
3331, 32breqtrrid 5191 . . . . . . . . . . . . . . 15 ((⌊‘(𝑁 / (2↑𝑚))) = 0 → 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))
3430, 33biimtrrdi 253 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((0 ≤ (𝑁 / (2↑𝑚)) ∧ (𝑁 / (2↑𝑚)) < (0 + 1)) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3527, 34mpand 693 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < (0 + 1) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3624, 35biimtrrid 242 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((𝑁 / (2↑𝑚)) < 1 → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3722, 36sylbird 259 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (¬ 1 ≤ (𝑁 / (2↑𝑚)) → 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
3815, 37mt3d 148 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 ≤ (𝑁 / (2↑𝑚)))
3921, 11, 19lemuldivd 13119 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → ((1 · (2↑𝑚)) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑𝑚))))
4038, 39mpbird 256 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (1 · (2↑𝑚)) ≤ 𝑁)
4114, 40eqbrtrrd 5177 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) ≤ 𝑁)
42 elfzolt2 13695 . . . . . . . . 9 (𝑁 ∈ (0..^(2↑𝑀)) → 𝑁 < (2↑𝑀))
43423ad2ant2 1131 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑁 < (2↑𝑀))
449, 11, 12, 41, 43lelttrd 11422 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (2↑𝑚) < (2↑𝑀))
45 1lt2 12435 . . . . . . . . 9 1 < 2
4645a1i 11 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 1 < 2)
478, 18, 6, 46ltexp2d 14268 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → (𝑚 < 𝑀 ↔ (2↑𝑚) < (2↑𝑀)))
4844, 47mpbird 256 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 < 𝑀)
49 elfzo2 13689 . . . . . 6 (𝑚 ∈ (0..^𝑀) ↔ (𝑚 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑚 < 𝑀))
504, 6, 48, 49syl3anbrc 1340 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀)) ∧ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) → 𝑚 ∈ (0..^𝑀))
51503expia 1118 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))) → 𝑚 ∈ (0..^𝑀)))
521, 51biimtrid 241 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → (𝑚 ∈ (bits‘𝑁) → 𝑚 ∈ (0..^𝑀)))
5352ssrdv 3985 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ (0..^(2↑𝑀))) → (bits‘𝑁) ⊆ (0..^𝑀))
54 simpr 483 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
5554nnred 12279 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℝ)
56 simpllr 774 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
5756nn0red 12585 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
58 max2 13220 . . . . . . 7 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
5955, 57, 58syl2anc 582 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
60 simplr 767 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (bits‘𝑁) ⊆ (0..^𝑀))
61 n2dvdsm1 16371 . . . . . . . . . . 11 ¬ 2 ∥ -1
62 simplll 773 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
6362zred 12718 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
64 2nn 12337 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
6564a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ∈ ℕ)
6654nnnn0d 12584 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0)
6756, 66ifcld 4579 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℕ0)
6865, 67nnexpcld 14262 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℕ)
6963, 68nndivred 12318 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∈ ℝ)
70 1red 11265 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 1 ∈ ℝ)
7162zcnd 12719 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
7268nncnd 12280 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℂ)
73 2cnd 12342 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ∈ ℂ)
74 2ne0 12368 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
7574a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 2 ≠ 0)
7667nn0zd 12636 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℤ)
7773, 75, 76expne0d 14171 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ≠ 0)
7871, 72, 77divnegd 12054 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) = (-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
7967nn0red 12585 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℝ)
8068nnred 12279 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℝ)
81 max1 13218 . . . . . . . . . . . . . . . . . . 19 ((-𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → -𝑁 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
8255, 57, 81syl2anc 582 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
83 2z 12646 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
84 uzid 12889 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
8583, 84ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
86 bernneq3 14248 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℕ0) → if(-𝑁𝑀, 𝑀, -𝑁) < (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
8785, 67, 86sylancr 585 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) < (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
8879, 80, 87ltled 11412 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ≤ (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
8955, 79, 80, 82, 88letrd 11421 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
9072mulridd 11281 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((2↑if(-𝑁𝑀, 𝑀, -𝑁)) · 1) = (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
9189, 90breqtrrd 5181 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -𝑁 ≤ ((2↑if(-𝑁𝑀, 𝑀, -𝑁)) · 1))
9268nnrpd 13068 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2↑if(-𝑁𝑀, 𝑀, -𝑁)) ∈ ℝ+)
9355, 70, 92ledivmuld 13123 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ≤ 1 ↔ -𝑁 ≤ ((2↑if(-𝑁𝑀, 𝑀, -𝑁)) · 1)))
9491, 93mpbird 256 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ≤ 1)
9578, 94eqbrtrd 5175 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ≤ 1)
9669, 70, 95lenegcon1d 11846 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → -1 ≤ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
9754nngt0d 12313 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < -𝑁)
9868nngt0d 12313 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < (2↑if(-𝑁𝑀, 𝑀, -𝑁)))
9955, 80, 97, 98divgt0d 12201 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < (-𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
10099, 78breqtrrd 5181 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → 0 < -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))
10169lt0neg1d 11833 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < 0 ↔ 0 < -(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))))
102100, 101mpbird 256 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < 0)
103 ax-1cn 11216 . . . . . . . . . . . . . . 15 1 ∈ ℂ
104 neg1cn 12378 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
105 1pneg1e0 12383 . . . . . . . . . . . . . . 15 (1 + -1) = 0
106103, 104, 105addcomli 11456 . . . . . . . . . . . . . 14 (-1 + 1) = 0
107102, 106breqtrrdi 5195 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < (-1 + 1))
108 neg1z 12650 . . . . . . . . . . . . . 14 -1 ∈ ℤ
109 flbi 13836 . . . . . . . . . . . . . 14 (((𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∈ ℝ ∧ -1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) = -1 ↔ (-1 ≤ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∧ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < (-1 + 1))))
11069, 108, 109sylancl 584 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ((⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) = -1 ↔ (-1 ≤ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) ∧ (𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))) < (-1 + 1))))
11196, 107, 110mpbir2and 711 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) = -1)
112111breq2d 5165 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))) ↔ 2 ∥ -1))
11361, 112mtbiri 326 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁)))))
114 bitsval2 16425 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ if(-𝑁𝑀, 𝑀, -𝑁) ∈ ℕ0) → (if(-𝑁𝑀, 𝑀, -𝑁) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))))
11562, 67, 114syl2anc 582 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (if(-𝑁𝑀, 𝑀, -𝑁) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑if(-𝑁𝑀, 𝑀, -𝑁))))))
116113, 115mpbird 256 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ (bits‘𝑁))
11760, 116sseldd 3980 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) ∈ (0..^𝑀))
118 elfzolt2 13695 . . . . . . . 8 (if(-𝑁𝑀, 𝑀, -𝑁) ∈ (0..^𝑀) → if(-𝑁𝑀, 𝑀, -𝑁) < 𝑀)
119117, 118syl 17 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → if(-𝑁𝑀, 𝑀, -𝑁) < 𝑀)
12079, 57ltnled 11411 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → (if(-𝑁𝑀, 𝑀, -𝑁) < 𝑀 ↔ ¬ 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁)))
121119, 120mpbid 231 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) ∧ -𝑁 ∈ ℕ) → ¬ 𝑀 ≤ if(-𝑁𝑀, 𝑀, -𝑁))
12259, 121pm2.65da 815 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → ¬ -𝑁 ∈ ℕ)
123122intnand 487 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → ¬ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))
124 simpll 765 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ ℤ)
125 elznn0nn 12624 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
126124, 125sylib 217 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
127126ord 862 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (¬ 𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
128123, 127mt3d 148 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ ℕ0)
129 simplr 767 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑀 ∈ ℕ0)
130 simpr 483 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → (bits‘𝑁) ⊆ (0..^𝑀))
131 eqid 2726 . . 3 inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
132128, 129, 130, 131bitsfzolem 16434 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ (bits‘𝑁) ⊆ (0..^𝑀)) → 𝑁 ∈ (0..^(2↑𝑀)))
13353, 132impbida 799 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  {crab 3419  wss 3947  ifcif 4533   class class class wbr 5153  cfv 6554  (class class class)co 7424  infcinf 9484  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  -cneg 11495   / cdiv 11921  cn 12264  2c2 12319  0cn0 12524  cz 12610  cuz 12874  +crp 13028  ..^cfzo 13681  cfl 13810  cexp 14081  cdvds 16256  bitscbits 16419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-dvds 16257  df-bits 16422
This theorem is referenced by:  bitsfi  16437  0bits  16439  bitsinv1  16442  sadcaddlem  16457  sadaddlem  16466  sadasslem  16470  sadeq  16472
  Copyright terms: Public domain W3C validator