![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexnnod | Structured version Visualization version GIF version |
Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
gexnnod | ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 12233 | . . . . 5 ⊢ (𝐸 ∈ ℕ → 𝐸 ≠ 0) | |
2 | 1 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐸 ≠ 0) |
3 | nnz 12566 | . . . . . . 7 ⊢ (𝐸 ∈ ℕ → 𝐸 ∈ ℤ) | |
4 | 3 | 3ad2ant2 1135 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐸 ∈ ℤ) |
5 | 0dvds 16207 | . . . . . 6 ⊢ (𝐸 ∈ ℤ → (0 ∥ 𝐸 ↔ 𝐸 = 0)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (0 ∥ 𝐸 ↔ 𝐸 = 0)) |
7 | 6 | necon3bbid 2979 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (¬ 0 ∥ 𝐸 ↔ 𝐸 ≠ 0)) |
8 | 2, 7 | mpbird 257 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ¬ 0 ∥ 𝐸) |
9 | gexod.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
10 | gexod.2 | . . . . . 6 ⊢ 𝐸 = (gEx‘𝐺) | |
11 | gexod.3 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
12 | 9, 10, 11 | gexod 19438 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
13 | 12 | 3adant2 1132 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
14 | breq1 5147 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) ∥ 𝐸 ↔ 0 ∥ 𝐸)) | |
15 | 13, 14 | syl5ibcom 244 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → 0 ∥ 𝐸)) |
16 | 8, 15 | mtod 197 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ¬ (𝑂‘𝐴) = 0) |
17 | 9, 11 | odcl 19388 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
18 | 17 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
19 | elnn0 12461 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
20 | 18, 19 | sylib 217 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
21 | 20 | ord 863 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) = 0)) |
22 | 16, 21 | mt3d 148 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5144 ‘cfv 6535 0cc0 11097 ℕcn 12199 ℕ0cn0 12459 ℤcz 12545 ∥ cdvds 16184 Basecbs 17131 Grpcgrp 18806 odcod 19376 gExcgex 19377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-sup 9424 df-inf 9425 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-n0 12460 df-z 12546 df-uz 12810 df-rp 12962 df-fz 13472 df-fl 13744 df-mod 13822 df-seq 13954 df-exp 14015 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-dvds 16185 df-0g 17374 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-grp 18809 df-minusg 18810 df-sbg 18811 df-mulg 18936 df-od 19380 df-gex 19381 |
This theorem is referenced by: gexexlem 19703 |
Copyright terms: Public domain | W3C validator |