Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gexnnod | Structured version Visualization version GIF version |
Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
gexnnod | ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 11709 | . . . . 5 ⊢ (𝐸 ∈ ℕ → 𝐸 ≠ 0) | |
2 | 1 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐸 ≠ 0) |
3 | nnz 12044 | . . . . . . 7 ⊢ (𝐸 ∈ ℕ → 𝐸 ∈ ℤ) | |
4 | 3 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐸 ∈ ℤ) |
5 | 0dvds 15679 | . . . . . 6 ⊢ (𝐸 ∈ ℤ → (0 ∥ 𝐸 ↔ 𝐸 = 0)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (0 ∥ 𝐸 ↔ 𝐸 = 0)) |
7 | 6 | necon3bbid 2989 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (¬ 0 ∥ 𝐸 ↔ 𝐸 ≠ 0)) |
8 | 2, 7 | mpbird 260 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ¬ 0 ∥ 𝐸) |
9 | gexod.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
10 | gexod.2 | . . . . . 6 ⊢ 𝐸 = (gEx‘𝐺) | |
11 | gexod.3 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
12 | 9, 10, 11 | gexod 18779 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
13 | 12 | 3adant2 1129 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
14 | breq1 5036 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) ∥ 𝐸 ↔ 0 ∥ 𝐸)) | |
15 | 13, 14 | syl5ibcom 248 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 → 0 ∥ 𝐸)) |
16 | 8, 15 | mtod 201 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ¬ (𝑂‘𝐴) = 0) |
17 | 9, 11 | odcl 18732 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
18 | 17 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ0) |
19 | elnn0 11937 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
20 | 18, 19 | sylib 221 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
21 | 20 | ord 862 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (¬ (𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) = 0)) |
22 | 16, 21 | mt3d 150 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 845 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 ‘cfv 6336 0cc0 10576 ℕcn 11675 ℕ0cn0 11935 ℤcz 12021 ∥ cdvds 15656 Basecbs 16542 Grpcgrp 18170 odcod 18720 gExcgex 18721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8940 df-inf 8941 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-n0 11936 df-z 12022 df-uz 12284 df-rp 12432 df-fz 12941 df-fl 13212 df-mod 13288 df-seq 13420 df-exp 13481 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-dvds 15657 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-grp 18173 df-minusg 18174 df-sbg 18175 df-mulg 18293 df-od 18724 df-gex 18725 |
This theorem is referenced by: gexexlem 19041 |
Copyright terms: Public domain | W3C validator |