| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rollelem | Structured version Visualization version GIF version | ||
| Description: Lemma for rolle 25927. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| rolle.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rolle.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| rolle.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
| rolle.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| rolle.d | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| rolle.r | ⊢ (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
| rolle.u | ⊢ (𝜑 → 𝑈 ∈ (𝐴[,]𝐵)) |
| rolle.n | ⊢ (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵}) |
| Ref | Expression |
|---|---|
| rollelem | ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rolle.n | . . 3 ⊢ (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵}) | |
| 2 | rolle.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (𝐴[,]𝐵)) | |
| 3 | rolle.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | 3 | rexrd 11200 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 5 | rolle.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 5 | rexrd 11200 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 7 | rolle.lt | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 8 | 3, 5, 7 | ltled 11298 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 9 | prunioo 13418 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
| 10 | 4, 6, 8, 9 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) |
| 11 | 2, 10 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) |
| 12 | elun 4112 | . . . . 5 ⊢ (𝑈 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑈 ∈ (𝐴(,)𝐵) ∨ 𝑈 ∈ {𝐴, 𝐵})) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ (𝐴(,)𝐵) ∨ 𝑈 ∈ {𝐴, 𝐵})) |
| 14 | 13 | ord 864 | . . 3 ⊢ (𝜑 → (¬ 𝑈 ∈ (𝐴(,)𝐵) → 𝑈 ∈ {𝐴, 𝐵})) |
| 15 | 1, 14 | mt3d 148 | . 2 ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
| 16 | rolle.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 17 | cncff 24819 | . . . 4 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 19 | iccssre 13366 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 20 | 3, 5, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 21 | ioossicc 13370 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
| 23 | rolle.d | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
| 24 | 15, 23 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
| 25 | rolle.r | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) | |
| 26 | ssralv 4012 | . . . 4 ⊢ ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈) → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈))) | |
| 27 | 22, 25, 26 | sylc 65 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
| 28 | 18, 20, 15, 22, 24, 27 | dvferm 25925 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) |
| 29 | fveqeq2 6849 | . . 3 ⊢ (𝑥 = 𝑈 → (((ℝ D 𝐹)‘𝑥) = 0 ↔ ((ℝ D 𝐹)‘𝑈) = 0)) | |
| 30 | 29 | rspcev 3585 | . 2 ⊢ ((𝑈 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑈) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
| 31 | 15, 28, 30 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∪ cun 3909 ⊆ wss 3911 {cpr 4587 class class class wbr 5102 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 (,)cioo 13282 [,]cicc 13285 –cn→ccncf 24802 D cdv 25797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17361 df-topn 17362 df-topgen 17382 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-cncf 24804 df-limc 25800 df-dv 25801 |
| This theorem is referenced by: rolle 25927 |
| Copyright terms: Public domain | W3C validator |