MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rollelem Structured version   Visualization version   GIF version

Theorem rollelem 25058
Description: Lemma for rolle 25059. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a (𝜑𝐴 ∈ ℝ)
rolle.b (𝜑𝐵 ∈ ℝ)
rolle.lt (𝜑𝐴 < 𝐵)
rolle.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
rolle.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
rolle.r (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
rolle.u (𝜑𝑈 ∈ (𝐴[,]𝐵))
rolle.n (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵})
Assertion
Ref Expression
rollelem (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑈,𝑦

Proof of Theorem rollelem
StepHypRef Expression
1 rolle.n . . 3 (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵})
2 rolle.u . . . . . 6 (𝜑𝑈 ∈ (𝐴[,]𝐵))
3 rolle.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
43rexrd 10956 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
5 rolle.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
65rexrd 10956 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
7 rolle.lt . . . . . . . 8 (𝜑𝐴 < 𝐵)
83, 5, 7ltled 11053 . . . . . . 7 (𝜑𝐴𝐵)
9 prunioo 13142 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
104, 6, 8, 9syl3anc 1369 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
112, 10eleqtrrd 2842 . . . . 5 (𝜑𝑈 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
12 elun 4079 . . . . 5 (𝑈 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑈 ∈ (𝐴(,)𝐵) ∨ 𝑈 ∈ {𝐴, 𝐵}))
1311, 12sylib 217 . . . 4 (𝜑 → (𝑈 ∈ (𝐴(,)𝐵) ∨ 𝑈 ∈ {𝐴, 𝐵}))
1413ord 860 . . 3 (𝜑 → (¬ 𝑈 ∈ (𝐴(,)𝐵) → 𝑈 ∈ {𝐴, 𝐵}))
151, 14mt3d 148 . 2 (𝜑𝑈 ∈ (𝐴(,)𝐵))
16 rolle.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
17 cncff 23962 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1816, 17syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
19 iccssre 13090 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
203, 5, 19syl2anc 583 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
21 ioossicc 13094 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2221a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
23 rolle.d . . . 4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
2415, 23eleqtrrd 2842 . . 3 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
25 rolle.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
26 ssralv 3983 . . . 4 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑈) → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈)))
2722, 25, 26sylc 65 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
2818, 20, 15, 22, 24, 27dvferm 25057 . 2 (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0)
29 fveqeq2 6765 . . 3 (𝑥 = 𝑈 → (((ℝ D 𝐹)‘𝑥) = 0 ↔ ((ℝ D 𝐹)‘𝑈) = 0))
3029rspcev 3552 . 2 ((𝑈 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑈) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
3115, 28, 30syl2anc 583 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cun 3881  wss 3883  {cpr 4560   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  [,]cicc 13011  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  rolle  25059
  Copyright terms: Public domain W3C validator