![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rollelem | Structured version Visualization version GIF version |
Description: Lemma for rolle 25743. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
rolle.a | β’ (π β π΄ β β) |
rolle.b | β’ (π β π΅ β β) |
rolle.lt | β’ (π β π΄ < π΅) |
rolle.f | β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) |
rolle.d | β’ (π β dom (β D πΉ) = (π΄(,)π΅)) |
rolle.r | β’ (π β βπ¦ β (π΄[,]π΅)(πΉβπ¦) β€ (πΉβπ)) |
rolle.u | β’ (π β π β (π΄[,]π΅)) |
rolle.n | β’ (π β Β¬ π β {π΄, π΅}) |
Ref | Expression |
---|---|
rollelem | β’ (π β βπ₯ β (π΄(,)π΅)((β D πΉ)βπ₯) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rolle.n | . . 3 β’ (π β Β¬ π β {π΄, π΅}) | |
2 | rolle.u | . . . . . 6 β’ (π β π β (π΄[,]π΅)) | |
3 | rolle.a | . . . . . . . 8 β’ (π β π΄ β β) | |
4 | 3 | rexrd 11269 | . . . . . . 7 β’ (π β π΄ β β*) |
5 | rolle.b | . . . . . . . 8 β’ (π β π΅ β β) | |
6 | 5 | rexrd 11269 | . . . . . . 7 β’ (π β π΅ β β*) |
7 | rolle.lt | . . . . . . . 8 β’ (π β π΄ < π΅) | |
8 | 3, 5, 7 | ltled 11367 | . . . . . . 7 β’ (π β π΄ β€ π΅) |
9 | prunioo 13463 | . . . . . . 7 β’ ((π΄ β β* β§ π΅ β β* β§ π΄ β€ π΅) β ((π΄(,)π΅) βͺ {π΄, π΅}) = (π΄[,]π΅)) | |
10 | 4, 6, 8, 9 | syl3anc 1370 | . . . . . 6 β’ (π β ((π΄(,)π΅) βͺ {π΄, π΅}) = (π΄[,]π΅)) |
11 | 2, 10 | eleqtrrd 2835 | . . . . 5 β’ (π β π β ((π΄(,)π΅) βͺ {π΄, π΅})) |
12 | elun 4148 | . . . . 5 β’ (π β ((π΄(,)π΅) βͺ {π΄, π΅}) β (π β (π΄(,)π΅) β¨ π β {π΄, π΅})) | |
13 | 11, 12 | sylib 217 | . . . 4 β’ (π β (π β (π΄(,)π΅) β¨ π β {π΄, π΅})) |
14 | 13 | ord 861 | . . 3 β’ (π β (Β¬ π β (π΄(,)π΅) β π β {π΄, π΅})) |
15 | 1, 14 | mt3d 148 | . 2 β’ (π β π β (π΄(,)π΅)) |
16 | rolle.f | . . . 4 β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) | |
17 | cncff 24634 | . . . 4 β’ (πΉ β ((π΄[,]π΅)βcnββ) β πΉ:(π΄[,]π΅)βΆβ) | |
18 | 16, 17 | syl 17 | . . 3 β’ (π β πΉ:(π΄[,]π΅)βΆβ) |
19 | iccssre 13411 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄[,]π΅) β β) | |
20 | 3, 5, 19 | syl2anc 583 | . . 3 β’ (π β (π΄[,]π΅) β β) |
21 | ioossicc 13415 | . . . 4 β’ (π΄(,)π΅) β (π΄[,]π΅) | |
22 | 21 | a1i 11 | . . 3 β’ (π β (π΄(,)π΅) β (π΄[,]π΅)) |
23 | rolle.d | . . . 4 β’ (π β dom (β D πΉ) = (π΄(,)π΅)) | |
24 | 15, 23 | eleqtrrd 2835 | . . 3 β’ (π β π β dom (β D πΉ)) |
25 | rolle.r | . . . 4 β’ (π β βπ¦ β (π΄[,]π΅)(πΉβπ¦) β€ (πΉβπ)) | |
26 | ssralv 4050 | . . . 4 β’ ((π΄(,)π΅) β (π΄[,]π΅) β (βπ¦ β (π΄[,]π΅)(πΉβπ¦) β€ (πΉβπ) β βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ))) | |
27 | 22, 25, 26 | sylc 65 | . . 3 β’ (π β βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ)) |
28 | 18, 20, 15, 22, 24, 27 | dvferm 25741 | . 2 β’ (π β ((β D πΉ)βπ) = 0) |
29 | fveqeq2 6900 | . . 3 β’ (π₯ = π β (((β D πΉ)βπ₯) = 0 β ((β D πΉ)βπ) = 0)) | |
30 | 29 | rspcev 3612 | . 2 β’ ((π β (π΄(,)π΅) β§ ((β D πΉ)βπ) = 0) β βπ₯ β (π΄(,)π΅)((β D πΉ)βπ₯) = 0) |
31 | 15, 28, 30 | syl2anc 583 | 1 β’ (π β βπ₯ β (π΄(,)π΅)((β D πΉ)βπ₯) = 0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β¨ wo 844 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 βͺ cun 3946 β wss 3948 {cpr 4630 class class class wbr 5148 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7412 βcr 11112 0cc0 11113 β*cxr 11252 < clt 11253 β€ cle 11254 (,)cioo 13329 [,]cicc 13332 βcnβccncf 24617 D cdv 25613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-rest 17373 df-topn 17374 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-cncf 24619 df-limc 25616 df-dv 25617 |
This theorem is referenced by: rolle 25743 |
Copyright terms: Public domain | W3C validator |