MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nna0r Structured version   Visualization version   GIF version

Theorem nna0r 8530
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8459) so that we can avoid ax-rep 5219, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nna0r (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)

Proof of Theorem nna0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . 3 (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2749 . 2 (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅))
4 oveq2 7360 . . 3 (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2749 . 2 (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦))
7 oveq2 7360 . . 3 (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2749 . 2 (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦))
10 oveq2 7360 . . 3 (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2749 . 2 (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴))
13 0elon 6366 . . 3 ∅ ∈ On
14 oa0 8437 . . 3 (∅ ∈ On → (∅ +o ∅) = ∅)
1513, 14ax-mp 5 . 2 (∅ +o ∅) = ∅
16 peano1 7825 . . . 4 ∅ ∈ ω
17 nnasuc 8527 . . . 4 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
1816, 17mpan 690 . . 3 (𝑦 ∈ ω → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
19 suceq 6379 . . . 4 ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦)
2019eqeq2d 2744 . . 3 ((∅ +o 𝑦) = 𝑦 → ((∅ +o suc 𝑦) = suc (∅ +o 𝑦) ↔ (∅ +o suc 𝑦) = suc 𝑦))
2118, 20syl5ibcom 245 . 2 (𝑦 ∈ ω → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦))
223, 6, 9, 12, 15, 21finds 7832 1 (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  c0 4282  Oncon0 6311  suc csuc 6313  (class class class)co 7352  ωcom 7802   +o coa 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395
This theorem is referenced by:  nnacom  8538  nnm1  8573  dflim5  43446  tfsconcat0b  43463
  Copyright terms: Public domain W3C validator