| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nna0r | Structured version Visualization version GIF version | ||
| Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8463) so that we can avoid ax-rep 5221, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| nna0r | ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . 3 ⊢ (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅)) | |
| 2 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
| 3 | 1, 2 | eqeq12d 2745 | . 2 ⊢ (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅)) |
| 4 | oveq2 7361 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦)) | |
| 5 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦)) |
| 7 | oveq2 7361 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦)) | |
| 8 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
| 9 | 7, 8 | eqeq12d 2745 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
| 10 | oveq2 7361 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴)) | |
| 11 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴)) |
| 13 | 0elon 6366 | . . 3 ⊢ ∅ ∈ On | |
| 14 | oa0 8441 | . . 3 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 15 | 13, 14 | ax-mp 5 | . 2 ⊢ (∅ +o ∅) = ∅ |
| 16 | peano1 7829 | . . . 4 ⊢ ∅ ∈ ω | |
| 17 | nnasuc 8531 | . . . 4 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) | |
| 18 | 16, 17 | mpan 690 | . . 3 ⊢ (𝑦 ∈ ω → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) |
| 19 | suceq 6379 | . . . 4 ⊢ ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦) | |
| 20 | 19 | eqeq2d 2740 | . . 3 ⊢ ((∅ +o 𝑦) = 𝑦 → ((∅ +o suc 𝑦) = suc (∅ +o 𝑦) ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
| 21 | 18, 20 | syl5ibcom 245 | . 2 ⊢ (𝑦 ∈ ω → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦)) |
| 22 | 3, 6, 9, 12, 15, 21 | finds 7836 | 1 ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4286 Oncon0 6311 suc csuc 6313 (class class class)co 7353 ωcom 7806 +o coa 8392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-oadd 8399 |
| This theorem is referenced by: nnacom 8542 nnm1 8577 dflim5 43302 tfsconcat0b 43319 |
| Copyright terms: Public domain | W3C validator |