![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nna0r | Structured version Visualization version GIF version |
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8534) so that we can avoid ax-rep 5276, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
nna0r | ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7410 | . . 3 ⊢ (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅)) | |
2 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
3 | 1, 2 | eqeq12d 2740 | . 2 ⊢ (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅)) |
4 | oveq2 7410 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦)) | |
5 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
6 | 4, 5 | eqeq12d 2740 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦)) |
7 | oveq2 7410 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦)) | |
8 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
9 | 7, 8 | eqeq12d 2740 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
10 | oveq2 7410 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴)) | |
11 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
12 | 10, 11 | eqeq12d 2740 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴)) |
13 | 0elon 6409 | . . 3 ⊢ ∅ ∈ On | |
14 | oa0 8512 | . . 3 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ (∅ +o ∅) = ∅ |
16 | peano1 7873 | . . . 4 ⊢ ∅ ∈ ω | |
17 | nnasuc 8602 | . . . 4 ⊢ ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) | |
18 | 16, 17 | mpan 687 | . . 3 ⊢ (𝑦 ∈ ω → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) |
19 | suceq 6421 | . . . 4 ⊢ ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦) | |
20 | 19 | eqeq2d 2735 | . . 3 ⊢ ((∅ +o 𝑦) = 𝑦 → ((∅ +o suc 𝑦) = suc (∅ +o 𝑦) ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
21 | 18, 20 | syl5ibcom 244 | . 2 ⊢ (𝑦 ∈ ω → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦)) |
22 | 3, 6, 9, 12, 15, 21 | finds 7883 | 1 ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∅c0 4315 Oncon0 6355 suc csuc 6357 (class class class)co 7402 ωcom 7849 +o coa 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-oadd 8466 |
This theorem is referenced by: nnacom 8613 nnm1 8648 dflim5 42593 tfsconcat0b 42610 |
Copyright terms: Public domain | W3C validator |