Step | Hyp | Ref
| Expression |
1 | | frfnom 8437 |
. . . 4
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω) Fn ω |
2 | | fvelrnb 6951 |
. . . 4
⊢
((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) = 𝐴)) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) = 𝐴) |
4 | | ovex 7444 |
. . . . . . 7
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) +s 1s ) ∈
V |
5 | | eqid 2730 |
. . . . . . . 8
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω) |
6 | | oveq1 7418 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 +s 1s ) = (𝑥 +s 1s
)) |
7 | | oveq1 7418 |
. . . . . . . 8
⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) → (𝑧 +s 1s ) =
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) +s 1s
)) |
8 | 5, 6, 7 | frsucmpt2 8442 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) +s 1s ) ∈ V)
→ ((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) +s 1s
)) |
9 | 4, 8 | mpan2 687 |
. . . . . 6
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) +s 1s
)) |
10 | | peano2 7883 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
11 | | fnfvelrn 7081 |
. . . . . . . 8
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)) |
12 | 1, 10, 11 | sylancr 585 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)) |
13 | | df-n0s 27931 |
. . . . . . . 8
⊢
ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) “ ω) |
14 | | df-ima 5688 |
. . . . . . . 8
⊢
(rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω) |
15 | 13, 14 | eqtri 2758 |
. . . . . . 7
⊢
ℕ0s = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω) |
16 | 12, 15 | eleqtrrdi 2842 |
. . . . . 6
⊢ (𝑦 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘suc 𝑦) ∈
ℕ0s) |
17 | 9, 16 | eqeltrrd 2832 |
. . . . 5
⊢ (𝑦 ∈ ω →
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) +s 1s ) ∈
ℕ0s) |
18 | | oveq1 7418 |
. . . . . 6
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) +s 1s ) = (𝐴 +s 1s
)) |
19 | 18 | eleq1d 2816 |
. . . . 5
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω)‘𝑦) +s 1s ) ∈
ℕ0s ↔ (𝐴 +s 1s ) ∈
ℕ0s)) |
20 | 17, 19 | syl5ibcom 244 |
. . . 4
⊢ (𝑦 ∈ ω →
(((rec((𝑥 ∈ V ↦
(𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) = 𝐴 → (𝐴 +s 1s ) ∈
ℕ0s)) |
21 | 20 | rexlimiv 3146 |
. . 3
⊢
(∃𝑦 ∈
ω ((rec((𝑥 ∈ V
↦ (𝑥 +s
1s )), 0s ) ↾ ω)‘𝑦) = 𝐴 → (𝐴 +s 1s ) ∈
ℕ0s) |
22 | 3, 21 | sylbi 216 |
. 2
⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) ↾ ω) → (𝐴 +s 1s ) ∈
ℕ0s) |
23 | 22, 15 | eleq2s 2849 |
1
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 +s
1s ) ∈ ℕ0s) |