MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2n0s Structured version   Visualization version   GIF version

Theorem peano2n0s 28280
Description: Peano postulate: the successor of a non-negative surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
peano2n0s (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕ0s)

Proof of Theorem peano2n0s
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-n0s 28265 . . 3 0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω)
21a1i 11 . 2 (𝐴 ∈ ℕ0s → ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω))
3 0sno 27795 . . 3 0s No
43a1i 11 . 2 (𝐴 ∈ ℕ0s → 0s No )
5 id 22 . 2 (𝐴 ∈ ℕ0s𝐴 ∈ ℕ0s)
62, 4, 5noseqp1 28242 1 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cima 5662  (class class class)co 7410  ωcom 7866  reccrdg 8428   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923  0scnn0s 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-n0s 28265
This theorem is referenced by:  dfn0s2  28281  n0scut2  28284  n0addscl  28293  1n0s  28297  n0sfincut  28303  n0subs  28310  n0sleltp1  28313  bdayn0sf1o  28316  eucliddivs  28322  n0seo  28364  pw2cut  28392
  Copyright terms: Public domain W3C validator