Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem3N Structured version   Visualization version   GIF version

Theorem pexmidlem3N 39955
Description: Lemma for pexmidN 39952. Use atom exchange hlatexch1 39378 to swap 𝑝 and 𝑞. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem3N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))

Proof of Theorem pexmidlem3N
StepHypRef Expression
1 simp1 1135 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴))
2 simp2l 1198 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑟𝑋)
3 simp2r 1199 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑞 ∈ ( 𝑋))
4 simpl1 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝐾 ∈ HL)
5 simpl2 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑋𝐴)
6 pexmidlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
86, 7polssatN 39891 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
94, 5, 8syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → ( 𝑋) ⊆ 𝐴)
10 simprr 773 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞 ∈ ( 𝑋))
119, 10sseldd 3996 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝐴)
12 simpl3 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑝𝐴)
13 simprl 771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑟𝑋)
145, 13sseldd 3996 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑟𝐴)
15 pexmidlem.l . . . . . 6 = (le‘𝐾)
16 pexmidlem.j . . . . . 6 = (join‘𝐾)
17 pexmidlem.p . . . . . 6 + = (+𝑃𝐾)
18 pexmidlem.m . . . . . 6 𝑀 = (𝑋 + {𝑝})
1915, 16, 6, 17, 7, 18pexmidlem1N 39953 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
20193adantl3 1167 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
2115, 16, 6hlatexch1 39378 . . . 4 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑝𝐴𝑟𝐴) ∧ 𝑞𝑟) → (𝑞 (𝑟 𝑝) → 𝑝 (𝑟 𝑞)))
224, 11, 12, 14, 20, 21syl131anc 1382 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 (𝑟 𝑝) → 𝑝 (𝑟 𝑞)))
23223impia 1116 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 (𝑟 𝑞))
2415, 16, 6, 17, 7, 18pexmidlem2N 39954 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
251, 2, 3, 23, 24syl13anc 1371 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  Atomscatm 39245  HLchlt 39332  +𝑃cpadd 39778  𝑃cpolN 39885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-polarityN 39886
This theorem is referenced by:  pexmidlem4N  39956
  Copyright terms: Public domain W3C validator