|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem3N | Structured version Visualization version GIF version | ||
| Description: Lemma for pexmidN 39972. Use atom exchange hlatexch1 39398 to swap 𝑝 and 𝑞. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| pexmidlem.l | ⊢ ≤ = (le‘𝐾) | 
| pexmidlem.j | ⊢ ∨ = (join‘𝐾) | 
| pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| pexmidlem.p | ⊢ + = (+𝑃‘𝐾) | 
| pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) | 
| pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) | 
| Ref | Expression | 
|---|---|
| pexmidlem3N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → (𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴)) | |
| 2 | simp2l 1199 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑟 ∈ 𝑋) | |
| 3 | simp2r 1200 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
| 4 | simpl1 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝐾 ∈ HL) | |
| 5 | simpl2 1192 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑋 ⊆ 𝐴) | |
| 6 | pexmidlem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | pexmidlem.o | . . . . . . 7 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 8 | 6, 7 | polssatN 39911 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) | 
| 9 | 4, 5, 8 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → ( ⊥ ‘𝑋) ⊆ 𝐴) | 
| 10 | simprr 772 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
| 11 | 9, 10 | sseldd 3983 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ∈ 𝐴) | 
| 12 | simpl3 1193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑝 ∈ 𝐴) | |
| 13 | simprl 770 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑟 ∈ 𝑋) | |
| 14 | 5, 13 | sseldd 3983 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑟 ∈ 𝐴) | 
| 15 | pexmidlem.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 16 | pexmidlem.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 17 | pexmidlem.p | . . . . . 6 ⊢ + = (+𝑃‘𝐾) | |
| 18 | pexmidlem.m | . . . . . 6 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 19 | 15, 16, 6, 17, 7, 18 | pexmidlem1N 39973 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) | 
| 20 | 19 | 3adantl3 1168 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) | 
| 21 | 15, 16, 6 | hlatexch1 39398 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ 𝑞 ≠ 𝑟) → (𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ≤ (𝑟 ∨ 𝑞))) | 
| 22 | 4, 11, 12, 14, 20, 21 | syl131anc 1384 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ≤ (𝑟 ∨ 𝑞))) | 
| 23 | 22 | 3impia 1117 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ≤ (𝑟 ∨ 𝑞)) | 
| 24 | 15, 16, 6, 17, 7, 18 | pexmidlem2N 39974 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | 
| 25 | 1, 2, 3, 23, 24 | syl13anc 1373 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 {csn 4625 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 lecple 17305 joincjn 18358 Atomscatm 39265 HLchlt 39352 +𝑃cpadd 39798 ⊥𝑃cpolN 39905 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-polarityN 39906 | 
| This theorem is referenced by: pexmidlem4N 39976 | 
| Copyright terms: Public domain | W3C validator |