MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mulcl Structured version   Visualization version   GIF version

Theorem pf1mulcl 22345
Description: The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1mulcl.t · = (.r𝑅)
Assertion
Ref Expression
pf1mulcl ((𝐹𝑄𝐺𝑄) → (𝐹f · 𝐺) ∈ 𝑄)

Proof of Theorem pf1mulcl
StepHypRef Expression
1 eqid 2726 . . 3 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
2 eqid 2726 . . 3 (Base‘(𝑅s (Base‘𝑅))) = (Base‘(𝑅s (Base‘𝑅)))
3 pf1rcl.q . . . . 5 𝑄 = ran (eval1𝑅)
43pf1rcl 22340 . . . 4 (𝐹𝑄𝑅 ∈ CRing)
54adantr 479 . . 3 ((𝐹𝑄𝐺𝑄) → 𝑅 ∈ CRing)
6 fvexd 6916 . . 3 ((𝐹𝑄𝐺𝑄) → (Base‘𝑅) ∈ V)
7 eqid 2726 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
83, 7pf1f 22341 . . . . 5 (𝐹𝑄𝐹:(Base‘𝑅)⟶(Base‘𝑅))
98adantr 479 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝐹:(Base‘𝑅)⟶(Base‘𝑅))
10 fvex 6914 . . . . 5 (Base‘𝑅) ∈ V
111, 7, 2pwselbasb 17503 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐹 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅)))
125, 10, 11sylancl 584 . . . 4 ((𝐹𝑄𝐺𝑄) → (𝐹 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅)))
139, 12mpbird 256 . . 3 ((𝐹𝑄𝐺𝑄) → 𝐹 ∈ (Base‘(𝑅s (Base‘𝑅))))
143, 7pf1f 22341 . . . . 5 (𝐺𝑄𝐺:(Base‘𝑅)⟶(Base‘𝑅))
1514adantl 480 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝐺:(Base‘𝑅)⟶(Base‘𝑅))
161, 7, 2pwselbasb 17503 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐺 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅)))
175, 10, 16sylancl 584 . . . 4 ((𝐹𝑄𝐺𝑄) → (𝐺 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅)))
1815, 17mpbird 256 . . 3 ((𝐹𝑄𝐺𝑄) → 𝐺 ∈ (Base‘(𝑅s (Base‘𝑅))))
19 pf1mulcl.t . . 3 · = (.r𝑅)
20 eqid 2726 . . 3 (.r‘(𝑅s (Base‘𝑅))) = (.r‘(𝑅s (Base‘𝑅)))
211, 2, 5, 6, 13, 18, 19, 20pwsmulrval 17506 . 2 ((𝐹𝑄𝐺𝑄) → (𝐹(.r‘(𝑅s (Base‘𝑅)))𝐺) = (𝐹f · 𝐺))
227, 3pf1subrg 22339 . . . 4 (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))))
235, 22syl 17 . . 3 ((𝐹𝑄𝐺𝑄) → 𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))))
2420subrgmcl 20568 . . . 4 ((𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))) ∧ 𝐹𝑄𝐺𝑄) → (𝐹(.r‘(𝑅s (Base‘𝑅)))𝐺) ∈ 𝑄)
25243expib 1119 . . 3 (𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))) → ((𝐹𝑄𝐺𝑄) → (𝐹(.r‘(𝑅s (Base‘𝑅)))𝐺) ∈ 𝑄))
2623, 25mpcom 38 . 2 ((𝐹𝑄𝐺𝑄) → (𝐹(.r‘(𝑅s (Base‘𝑅)))𝐺) ∈ 𝑄)
2721, 26eqeltrrd 2827 1 ((𝐹𝑄𝐺𝑄) → (𝐹f · 𝐺) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  ran crn 5683  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  Basecbs 17213  .rcmulr 17267  s cpws 17461  CRingccrg 20217  SubRingcsubrg 20551  eval1ce1 22305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-srg 20170  df-ring 20218  df-cring 20219  df-rhm 20454  df-subrng 20528  df-subrg 20553  df-lmod 20838  df-lss 20909  df-lsp 20949  df-assa 21851  df-asp 21852  df-ascl 21853  df-psr 21906  df-mvr 21907  df-mpl 21908  df-opsr 21910  df-evls 22087  df-evl 22088  df-psr1 22169  df-ply1 22171  df-evl1 22307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator