| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pf1mulcl | Structured version Visualization version GIF version | ||
| Description: The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) |
| pf1mulcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| pf1mulcl | ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝑅 ↑s (Base‘𝑅)) = (𝑅 ↑s (Base‘𝑅)) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘(𝑅 ↑s (Base‘𝑅))) = (Base‘(𝑅 ↑s (Base‘𝑅))) | |
| 3 | pf1rcl.q | . . . . 5 ⊢ 𝑄 = ran (eval1‘𝑅) | |
| 4 | 3 | pf1rcl 22242 | . . . 4 ⊢ (𝐹 ∈ 𝑄 → 𝑅 ∈ CRing) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑅 ∈ CRing) |
| 6 | fvexd 6880 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (Base‘𝑅) ∈ V) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 3, 7 | pf1f 22243 | . . . . 5 ⊢ (𝐹 ∈ 𝑄 → 𝐹:(Base‘𝑅)⟶(Base‘𝑅)) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹:(Base‘𝑅)⟶(Base‘𝑅)) |
| 10 | fvex 6878 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 11 | 1, 7, 2 | pwselbasb 17457 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅))) |
| 12 | 5, 10, 11 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅))) |
| 13 | 9, 12 | mpbird 257 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
| 14 | 3, 7 | pf1f 22243 | . . . . 5 ⊢ (𝐺 ∈ 𝑄 → 𝐺:(Base‘𝑅)⟶(Base‘𝑅)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺:(Base‘𝑅)⟶(Base‘𝑅)) |
| 16 | 1, 7, 2 | pwselbasb 17457 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅))) |
| 17 | 5, 10, 16 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅))) |
| 18 | 15, 17 | mpbird 257 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
| 19 | pf1mulcl.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 20 | eqid 2730 | . . 3 ⊢ (.r‘(𝑅 ↑s (Base‘𝑅))) = (.r‘(𝑅 ↑s (Base‘𝑅))) | |
| 21 | 1, 2, 5, 6, 13, 18, 19, 20 | pwsmulrval 17460 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) = (𝐹 ∘f · 𝐺)) |
| 22 | 7, 3 | pf1subrg 22241 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅)))) |
| 23 | 5, 22 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅)))) |
| 24 | 20 | subrgmcl 20499 | . . . 4 ⊢ ((𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅))) ∧ 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄) |
| 25 | 24 | 3expib 1122 | . . 3 ⊢ (𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅))) → ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄)) |
| 26 | 23, 25 | mpcom 38 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(.r‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄) |
| 27 | 21, 26 | eqeltrrd 2830 | 1 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ran crn 5647 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ∘f cof 7658 Basecbs 17185 .rcmulr 17227 ↑s cpws 17415 CRingccrg 20149 SubRingcsubrg 20484 eval1ce1 22207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-ofr 7661 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-sup 9411 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-evls 21987 df-evl 21988 df-psr1 22070 df-ply1 22072 df-evl1 22209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |