Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1addcl Structured version   Visualization version   GIF version

 Description: The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1addcl ((𝐹𝑄𝐺𝑄) → (𝐹f + 𝐺) ∈ 𝑄)

StepHypRef Expression
1 eqid 2824 . . 3 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
2 eqid 2824 . . 3 (Base‘(𝑅s (Base‘𝑅))) = (Base‘(𝑅s (Base‘𝑅)))
3 pf1rcl.q . . . . 5 𝑄 = ran (eval1𝑅)
43pf1rcl 20515 . . . 4 (𝐹𝑄𝑅 ∈ CRing)
54adantr 483 . . 3 ((𝐹𝑄𝐺𝑄) → 𝑅 ∈ CRing)
6 fvexd 6688 . . 3 ((𝐹𝑄𝐺𝑄) → (Base‘𝑅) ∈ V)
7 eqid 2824 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
83, 7pf1f 20516 . . . . 5 (𝐹𝑄𝐹:(Base‘𝑅)⟶(Base‘𝑅))
98adantr 483 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝐹:(Base‘𝑅)⟶(Base‘𝑅))
10 fvex 6686 . . . . 5 (Base‘𝑅) ∈ V
111, 7, 2pwselbasb 16764 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐹 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅)))
125, 10, 11sylancl 588 . . . 4 ((𝐹𝑄𝐺𝑄) → (𝐹 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅)))
139, 12mpbird 259 . . 3 ((𝐹𝑄𝐺𝑄) → 𝐹 ∈ (Base‘(𝑅s (Base‘𝑅))))
143, 7pf1f 20516 . . . . 5 (𝐺𝑄𝐺:(Base‘𝑅)⟶(Base‘𝑅))
1514adantl 484 . . . 4 ((𝐹𝑄𝐺𝑄) → 𝐺:(Base‘𝑅)⟶(Base‘𝑅))
161, 7, 2pwselbasb 16764 . . . . 5 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐺 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅)))
175, 10, 16sylancl 588 . . . 4 ((𝐹𝑄𝐺𝑄) → (𝐺 ∈ (Base‘(𝑅s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅)))
1815, 17mpbird 259 . . 3 ((𝐹𝑄𝐺𝑄) → 𝐺 ∈ (Base‘(𝑅s (Base‘𝑅))))
19 pf1addcl.a . . 3 + = (+g𝑅)
20 eqid 2824 . . 3 (+g‘(𝑅s (Base‘𝑅))) = (+g‘(𝑅s (Base‘𝑅)))
211, 2, 5, 6, 13, 18, 19, 20pwsplusgval 16766 . 2 ((𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑅s (Base‘𝑅)))𝐺) = (𝐹f + 𝐺))
227, 3pf1subrg 20514 . . . 4 (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))))
235, 22syl 17 . . 3 ((𝐹𝑄𝐺𝑄) → 𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))))
2420subrgacl 19549 . . . 4 ((𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))) ∧ 𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑅s (Base‘𝑅)))𝐺) ∈ 𝑄)
25243expib 1118 . . 3 (𝑄 ∈ (SubRing‘(𝑅s (Base‘𝑅))) → ((𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑅s (Base‘𝑅)))𝐺) ∈ 𝑄))
2623, 25mpcom 38 . 2 ((𝐹𝑄𝐺𝑄) → (𝐹(+g‘(𝑅s (Base‘𝑅)))𝐺) ∈ 𝑄)
2721, 26eqeltrrd 2917 1 ((𝐹𝑄𝐺𝑄) → (𝐹f + 𝐺) ∈ 𝑄)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1536   ∈ wcel 2113  Vcvv 3497  ran crn 5559  ⟶wf 6354  ‘cfv 6358  (class class class)co 7159   ∘f cof 7410  Basecbs 16486  +gcplusg 16568   ↑s cpws 16723  CRingccrg 19301  SubRingcsubrg 19534  eval1ce1 20480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-gsum 16719  df-prds 16724  df-pws 16726  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-srg 19259  df-ring 19302  df-cring 19303  df-rnghom 19470  df-subrg 19536  df-lmod 19639  df-lss 19707  df-lsp 19747  df-assa 20088  df-asp 20089  df-ascl 20090  df-psr 20139  df-mvr 20140  df-mpl 20141  df-opsr 20143  df-evls 20289  df-evl 20290  df-psr1 20351  df-ply1 20353  df-evl1 20482 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator