Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pf1addcl | Structured version Visualization version GIF version |
Description: The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) |
pf1addcl.a | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
pf1addcl | ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑅 ↑s (Base‘𝑅)) = (𝑅 ↑s (Base‘𝑅)) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘(𝑅 ↑s (Base‘𝑅))) = (Base‘(𝑅 ↑s (Base‘𝑅))) | |
3 | pf1rcl.q | . . . . 5 ⊢ 𝑄 = ran (eval1‘𝑅) | |
4 | 3 | pf1rcl 21525 | . . . 4 ⊢ (𝐹 ∈ 𝑄 → 𝑅 ∈ CRing) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑅 ∈ CRing) |
6 | fvexd 6781 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (Base‘𝑅) ∈ V) | |
7 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 3, 7 | pf1f 21526 | . . . . 5 ⊢ (𝐹 ∈ 𝑄 → 𝐹:(Base‘𝑅)⟶(Base‘𝑅)) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹:(Base‘𝑅)⟶(Base‘𝑅)) |
10 | fvex 6779 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
11 | 1, 7, 2 | pwselbasb 17209 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅))) |
12 | 5, 10, 11 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐹:(Base‘𝑅)⟶(Base‘𝑅))) |
13 | 9, 12 | mpbird 256 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐹 ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
14 | 3, 7 | pf1f 21526 | . . . . 5 ⊢ (𝐺 ∈ 𝑄 → 𝐺:(Base‘𝑅)⟶(Base‘𝑅)) |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺:(Base‘𝑅)⟶(Base‘𝑅)) |
16 | 1, 7, 2 | pwselbasb 17209 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ V) → (𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅))) |
17 | 5, 10, 16 | sylancl 586 | . . . 4 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅))) ↔ 𝐺:(Base‘𝑅)⟶(Base‘𝑅))) |
18 | 15, 17 | mpbird 256 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝐺 ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
19 | pf1addcl.a | . . 3 ⊢ + = (+g‘𝑅) | |
20 | eqid 2738 | . . 3 ⊢ (+g‘(𝑅 ↑s (Base‘𝑅))) = (+g‘(𝑅 ↑s (Base‘𝑅))) | |
21 | 1, 2, 5, 6, 13, 18, 19, 20 | pwsplusgval 17211 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑅 ↑s (Base‘𝑅)))𝐺) = (𝐹 ∘f + 𝐺)) |
22 | 7, 3 | pf1subrg 21524 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅)))) |
23 | 5, 22 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → 𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅)))) |
24 | 20 | subrgacl 20045 | . . . 4 ⊢ ((𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅))) ∧ 𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄) |
25 | 24 | 3expib 1121 | . . 3 ⊢ (𝑄 ∈ (SubRing‘(𝑅 ↑s (Base‘𝑅))) → ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄)) |
26 | 23, 25 | mpcom 38 | . 2 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹(+g‘(𝑅 ↑s (Base‘𝑅)))𝐺) ∈ 𝑄) |
27 | 21, 26 | eqeltrrd 2840 | 1 ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ran crn 5585 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ∘f cof 7521 Basecbs 16922 +gcplusg 16972 ↑s cpws 17167 CRingccrg 19794 SubRingcsubrg 20030 eval1ce1 21490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-ofr 7524 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-sup 9188 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-fzo 13393 df-seq 13732 df-hash 14055 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-hom 16996 df-cco 16997 df-0g 17162 df-gsum 17163 df-prds 17168 df-pws 17170 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-submnd 18441 df-grp 18590 df-minusg 18591 df-sbg 18592 df-mulg 18711 df-subg 18762 df-ghm 18842 df-cntz 18933 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-srg 19752 df-ring 19795 df-cring 19796 df-rnghom 19969 df-subrg 20032 df-lmod 20135 df-lss 20204 df-lsp 20244 df-assa 21070 df-asp 21071 df-ascl 21072 df-psr 21122 df-mvr 21123 df-mpl 21124 df-opsr 21126 df-evls 21292 df-evl 21293 df-psr1 21361 df-ply1 21363 df-evl1 21492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |