MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem2 Structured version   Visualization version   GIF version

Theorem wlkdlem2 29618
Description: Lemma 2 for wlkd 29621. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkd.e (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Assertion
Ref Expression
wlkdlem2 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼   𝜑,𝑘

Proof of Theorem wlkdlem2
StepHypRef Expression
1 wlkd.e . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
2 fzo0end 13726 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
3 fveq2 6861 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃𝑘) = (𝑃‘((♯‘𝐹) − 1)))
4 fvoveq1 7413 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃‘(𝑘 + 1)) = (𝑃‘(((♯‘𝐹) − 1) + 1)))
53, 4preq12d 4708 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))})
6 2fveq3 6866 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
75, 6sseq12d 3983 . . . . . 6 (𝑘 = ((♯‘𝐹) − 1) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
87rspcv 3587 . . . . 5 (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
92, 8syl 17 . . . 4 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
10 fvex 6874 . . . . . 6 (𝑃‘((♯‘𝐹) − 1)) ∈ V
11 fvex 6874 . . . . . 6 (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ V
1210, 11prss 4787 . . . . 5 (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
13 nncn 12201 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
14 npcan1 11610 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1513, 14syl 17 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1615fveq2d 6865 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ → (𝑃‘(((♯‘𝐹) − 1) + 1)) = (𝑃‘(♯‘𝐹)))
1716eleq1d 2814 . . . . . . 7 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1817biimpd 229 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1918adantld 490 . . . . 5 ((♯‘𝐹) ∈ ℕ → (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
2012, 19biimtrrid 243 . . . 4 ((♯‘𝐹) ∈ ℕ → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
219, 20syld 47 . . 3 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
221, 21syl5com 31 . 2 (𝜑 → ((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
23 fvex 6874 . . . . . . 7 (𝑃𝑘) ∈ V
24 fvex 6874 . . . . . . 7 (𝑃‘(𝑘 + 1)) ∈ V
2523, 24prss 4787 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
26 simpl 482 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2725, 26sylbir 235 . . . . 5 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2827a1i 11 . . . 4 ((𝜑𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
2928ralimdva 3146 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
301, 29mpd 15 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
3122, 30jca 511 1 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  {cpr 4594  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  cn 12193  ..^cfzo 13622  chash 14302  Word cword 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  wlkdlem3  29619
  Copyright terms: Public domain W3C validator