MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem2 Structured version   Visualization version   GIF version

Theorem wlkdlem2 29611
Description: Lemma 2 for wlkd 29614. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkd.e (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Assertion
Ref Expression
wlkdlem2 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼   𝜑,𝑘

Proof of Theorem wlkdlem2
StepHypRef Expression
1 wlkd.e . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
2 fzo0end 13719 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
3 fveq2 6858 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃𝑘) = (𝑃‘((♯‘𝐹) − 1)))
4 fvoveq1 7410 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃‘(𝑘 + 1)) = (𝑃‘(((♯‘𝐹) − 1) + 1)))
53, 4preq12d 4705 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))})
6 2fveq3 6863 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
75, 6sseq12d 3980 . . . . . 6 (𝑘 = ((♯‘𝐹) − 1) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
87rspcv 3584 . . . . 5 (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
92, 8syl 17 . . . 4 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
10 fvex 6871 . . . . . 6 (𝑃‘((♯‘𝐹) − 1)) ∈ V
11 fvex 6871 . . . . . 6 (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ V
1210, 11prss 4784 . . . . 5 (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
13 nncn 12194 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
14 npcan1 11603 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1513, 14syl 17 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1615fveq2d 6862 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ → (𝑃‘(((♯‘𝐹) − 1) + 1)) = (𝑃‘(♯‘𝐹)))
1716eleq1d 2813 . . . . . . 7 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1817biimpd 229 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1918adantld 490 . . . . 5 ((♯‘𝐹) ∈ ℕ → (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
2012, 19biimtrrid 243 . . . 4 ((♯‘𝐹) ∈ ℕ → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
219, 20syld 47 . . 3 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
221, 21syl5com 31 . 2 (𝜑 → ((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
23 fvex 6871 . . . . . . 7 (𝑃𝑘) ∈ V
24 fvex 6871 . . . . . . 7 (𝑃‘(𝑘 + 1)) ∈ V
2523, 24prss 4784 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
26 simpl 482 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2725, 26sylbir 235 . . . . 5 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2827a1i 11 . . . 4 ((𝜑𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
2928ralimdva 3145 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
301, 29mpd 15 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
3122, 30jca 511 1 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  {cpr 4591  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  cn 12186  ..^cfzo 13615  chash 14295  Word cword 14478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  wlkdlem3  29612
  Copyright terms: Public domain W3C validator