MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem2 Structured version   Visualization version   GIF version

Theorem wlkdlem2 27953
Description: Lemma 2 for wlkd 27956. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkd.e (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Assertion
Ref Expression
wlkdlem2 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼   𝜑,𝑘

Proof of Theorem wlkdlem2
StepHypRef Expression
1 wlkd.e . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
2 fzo0end 13407 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
3 fveq2 6756 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃𝑘) = (𝑃‘((♯‘𝐹) − 1)))
4 fvoveq1 7278 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃‘(𝑘 + 1)) = (𝑃‘(((♯‘𝐹) − 1) + 1)))
53, 4preq12d 4674 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))})
6 2fveq3 6761 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
75, 6sseq12d 3950 . . . . . 6 (𝑘 = ((♯‘𝐹) − 1) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
87rspcv 3547 . . . . 5 (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
92, 8syl 17 . . . 4 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
10 fvex 6769 . . . . . 6 (𝑃‘((♯‘𝐹) − 1)) ∈ V
11 fvex 6769 . . . . . 6 (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ V
1210, 11prss 4750 . . . . 5 (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
13 nncn 11911 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
14 npcan1 11330 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1513, 14syl 17 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1615fveq2d 6760 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ → (𝑃‘(((♯‘𝐹) − 1) + 1)) = (𝑃‘(♯‘𝐹)))
1716eleq1d 2823 . . . . . . 7 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1817biimpd 228 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1918adantld 490 . . . . 5 ((♯‘𝐹) ∈ ℕ → (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
2012, 19syl5bir 242 . . . 4 ((♯‘𝐹) ∈ ℕ → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
219, 20syld 47 . . 3 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
221, 21syl5com 31 . 2 (𝜑 → ((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
23 fvex 6769 . . . . . . 7 (𝑃𝑘) ∈ V
24 fvex 6769 . . . . . . 7 (𝑃‘(𝑘 + 1)) ∈ V
2523, 24prss 4750 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
26 simpl 482 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2725, 26sylbir 234 . . . . 5 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2827a1i 11 . . . 4 ((𝜑𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
2928ralimdva 3102 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
301, 29mpd 15 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
3122, 30jca 511 1 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {cpr 4560  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  cn 11903  ..^cfzo 13311  chash 13972  Word cword 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  wlkdlem3  27954
  Copyright terms: Public domain W3C validator