MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem2 Structured version   Visualization version   GIF version

Theorem wlkdlem2 29484
Description: Lemma 2 for wlkd 29487. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkd.e (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Assertion
Ref Expression
wlkdlem2 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼   𝜑,𝑘

Proof of Theorem wlkdlem2
StepHypRef Expression
1 wlkd.e . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
2 fzo0end 13748 . . . . 5 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
3 fveq2 6891 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃𝑘) = (𝑃‘((♯‘𝐹) − 1)))
4 fvoveq1 7437 . . . . . . . 8 (𝑘 = ((♯‘𝐹) − 1) → (𝑃‘(𝑘 + 1)) = (𝑃‘(((♯‘𝐹) − 1) + 1)))
53, 4preq12d 4741 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))})
6 2fveq3 6896 . . . . . . 7 (𝑘 = ((♯‘𝐹) − 1) → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
75, 6sseq12d 4011 . . . . . 6 (𝑘 = ((♯‘𝐹) − 1) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
87rspcv 3603 . . . . 5 (((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
92, 8syl 17 . . . 4 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
10 fvex 6904 . . . . . 6 (𝑃‘((♯‘𝐹) − 1)) ∈ V
11 fvex 6904 . . . . . 6 (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ V
1210, 11prss 4819 . . . . 5 (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))))
13 nncn 12242 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
14 npcan1 11661 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1513, 14syl 17 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
1615fveq2d 6895 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ → (𝑃‘(((♯‘𝐹) − 1) + 1)) = (𝑃‘(♯‘𝐹)))
1716eleq1d 2813 . . . . . . 7 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1817biimpd 228 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
1918adantld 490 . . . . 5 ((♯‘𝐹) ∈ ℕ → (((𝑃‘((♯‘𝐹) − 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) ∧ (𝑃‘(((♯‘𝐹) − 1) + 1)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
2012, 19biimtrrid 242 . . . 4 ((♯‘𝐹) ∈ ℕ → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ⊆ (𝐼‘(𝐹‘((♯‘𝐹) − 1))) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
219, 20syld 47 . . 3 ((♯‘𝐹) ∈ ℕ → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
221, 21syl5com 31 . 2 (𝜑 → ((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))))
23 fvex 6904 . . . . . . 7 (𝑃𝑘) ∈ V
24 fvex 6904 . . . . . . 7 (𝑃‘(𝑘 + 1)) ∈ V
2523, 24prss 4819 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
26 simpl 482 . . . . . 6 (((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ (𝐼‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2725, 26sylbir 234 . . . . 5 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
2827a1i 11 . . . 4 ((𝜑𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
2928ralimdva 3162 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
301, 29mpd 15 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
3122, 30jca 511 1 (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  Vcvv 3469  wss 3944  {cpr 4626  cfv 6542  (class class class)co 7414  cc 11128  0cc0 11130  1c1 11131   + caddc 11133  cmin 11466  cn 12234  ..^cfzo 13651  chash 14313  Word cword 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652
This theorem is referenced by:  wlkdlem3  29485
  Copyright terms: Public domain W3C validator