Step | Hyp | Ref
| Expression |
1 | | ffn 6718 |
. . 3
β’ (πΉ:π΄βΆTop β πΉ Fn π΄) |
2 | | eqid 2730 |
. . . 4
β’ {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} = {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} |
3 | 2 | ptval 23296 |
. . 3
β’ ((π΄ β π β§ πΉ Fn π΄) β (βtβπΉ) = (topGenβ{π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))})) |
4 | 1, 3 | sylan2 591 |
. 2
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β
(βtβπΉ) = (topGenβ{π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))})) |
5 | 2 | ptbas 23305 |
. . 3
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β {π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} β TopBases) |
6 | | tgcl 22694 |
. . 3
β’ ({π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))} β TopBases β
(topGenβ{π₯ β£
βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))}) β Top) |
7 | 5, 6 | syl 17 |
. 2
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β (topGenβ{π₯ β£ βπ((π Fn π΄ β§ βπ¦ β π΄ (πβπ¦) β (πΉβπ¦) β§ βπ§ β Fin βπ¦ β (π΄ β π§)(πβπ¦) = βͺ (πΉβπ¦)) β§ π₯ = Xπ¦ β π΄ (πβπ¦))}) β Top) |
8 | 4, 7 | eqeltrd 2831 |
1
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β
(βtβπΉ) β Top) |