MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Visualization version   GIF version

Theorem ptval2 22952
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1 𝐽 = (∏t𝐹)
ptval2.2 𝑋 = 𝐽
ptval2.3 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
Assertion
Ref Expression
ptval2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Distinct variable groups:   𝑢,𝑘,𝑤,𝐴   𝑘,𝐹,𝑢,𝑤   𝑘,𝑉,𝑢,𝑤   𝑤,𝑋
Allowed substitution hints:   𝐺(𝑤,𝑢,𝑘)   𝐽(𝑤,𝑢,𝑘)   𝑋(𝑢,𝑘)

Proof of Theorem ptval2
Dummy variables 𝑔 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6668 . . 3 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
2 ptval2.1 . . . 4 𝐽 = (∏t𝐹)
3 eqid 2736 . . . . 5 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
43ptval 22921 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
52, 4eqtrid 2788 . . 3 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 eqid 2736 . . . . 5 X𝑛𝐴 (𝐹𝑛) = X𝑛𝐴 (𝐹𝑛)
83, 7ptbasfi 22932 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
92ptuni 22945 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
10 ptval2.2 . . . . . . . 8 𝑋 = 𝐽
119, 10eqtr4di 2794 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1211sneqd 4598 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → {X𝑛𝐴 (𝐹𝑛)} = {𝑋})
13113ad2ant1 1133 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1413mpteq1d 5200 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1514cnveqd 5831 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1615imaeq1d 6012 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716mpoeq3dva 7434 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
18 ptval2.3 . . . . . . . 8 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1917, 18eqtr4di 2794 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = 𝐺)
2019rneqd 5893 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran 𝐺)
2112, 20uneq12d 4124 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({𝑋} ∪ ran 𝐺))
2221fveq2d 6846 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({𝑋} ∪ ran 𝐺)))
238, 22eqtrd 2776 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran 𝐺)))
2423fveq2d 6846 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
256, 24eqtrd 2776 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  cdif 3907  cun 3908  {csn 4586   cuni 4865  cmpt 5188  ccnv 5632  ran crn 5634  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  cmpo 7359  Xcixp 8835  Fincfn 8883  ficfi 9346  topGenctg 17319  tcpt 17320  Topctop 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-ixp 8836  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-topgen 17325  df-pt 17326  df-top 22243  df-bases 22296
This theorem is referenced by:  ptrescn  22990  ptrest  36077
  Copyright terms: Public domain W3C validator