MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Visualization version   GIF version

Theorem ptval2 23625
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1 𝐽 = (∏t𝐹)
ptval2.2 𝑋 = 𝐽
ptval2.3 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
Assertion
Ref Expression
ptval2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Distinct variable groups:   𝑢,𝑘,𝑤,𝐴   𝑘,𝐹,𝑢,𝑤   𝑘,𝑉,𝑢,𝑤   𝑤,𝑋
Allowed substitution hints:   𝐺(𝑤,𝑢,𝑘)   𝐽(𝑤,𝑢,𝑘)   𝑋(𝑢,𝑘)

Proof of Theorem ptval2
Dummy variables 𝑔 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6737 . . 3 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
2 ptval2.1 . . . 4 𝐽 = (∏t𝐹)
3 eqid 2735 . . . . 5 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
43ptval 23594 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
52, 4eqtrid 2787 . . 3 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 5sylan2 593 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 eqid 2735 . . . . 5 X𝑛𝐴 (𝐹𝑛) = X𝑛𝐴 (𝐹𝑛)
83, 7ptbasfi 23605 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
92ptuni 23618 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
10 ptval2.2 . . . . . . . 8 𝑋 = 𝐽
119, 10eqtr4di 2793 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1211sneqd 4643 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → {X𝑛𝐴 (𝐹𝑛)} = {𝑋})
13113ad2ant1 1132 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1413mpteq1d 5243 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1514cnveqd 5889 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1615imaeq1d 6079 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716mpoeq3dva 7510 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
18 ptval2.3 . . . . . . . 8 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1917, 18eqtr4di 2793 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = 𝐺)
2019rneqd 5952 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran 𝐺)
2112, 20uneq12d 4179 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({𝑋} ∪ ran 𝐺))
2221fveq2d 6911 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({𝑋} ∪ ran 𝐺)))
238, 22eqtrd 2775 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran 𝐺)))
2423fveq2d 6911 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
256, 24eqtrd 2775 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wral 3059  wrex 3068  cdif 3960  cun 3961  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  cmpo 7433  Xcixp 8936  Fincfn 8984  ficfi 9448  topGenctg 17484  tcpt 17485  Topctop 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-2o 8506  df-ixp 8937  df-en 8985  df-dom 8986  df-fin 8988  df-fi 9449  df-topgen 17490  df-pt 17491  df-top 22916  df-bases 22969
This theorem is referenced by:  ptrescn  23663  ptrest  37606
  Copyright terms: Public domain W3C validator