MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Visualization version   GIF version

Theorem ptval2 23104
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1 𝐽 = (∏tβ€˜πΉ)
ptval2.2 𝑋 = βˆͺ 𝐽
ptval2.3 𝐺 = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
Assertion
Ref Expression
ptval2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ 𝐽 = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ ran 𝐺))))
Distinct variable groups:   𝑒,π‘˜,𝑀,𝐴   π‘˜,𝐹,𝑒,𝑀   π‘˜,𝑉,𝑒,𝑀   𝑀,𝑋
Allowed substitution hints:   𝐺(𝑀,𝑒,π‘˜)   𝐽(𝑀,𝑒,π‘˜)   𝑋(𝑒,π‘˜)

Proof of Theorem ptval2
Dummy variables 𝑔 𝑛 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6717 . . 3 (𝐹:𝐴⟢Top β†’ 𝐹 Fn 𝐴)
2 ptval2.1 . . . 4 𝐽 = (∏tβ€˜πΉ)
3 eqid 2732 . . . . 5 {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))} = {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}
43ptval 23073 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ (∏tβ€˜πΉ) = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}))
52, 4eqtrid 2784 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ 𝐽 = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}))
61, 5sylan2 593 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ 𝐽 = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}))
7 eqid 2732 . . . . 5 X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)
83, 7ptbasfi 23084 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))} = (fiβ€˜({X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} βˆͺ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)))))
92ptuni 23097 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = βˆͺ 𝐽)
10 ptval2.2 . . . . . . . 8 𝑋 = βˆͺ 𝐽
119, 10eqtr4di 2790 . . . . . . 7 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
1211sneqd 4640 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ {X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} = {𝑋})
13113ad2ant1 1133 . . . . . . . . . . . 12 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
1413mpteq1d 5243 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ (𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) = (𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)))
1514cnveqd 5875 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) = β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)))
1615imaeq1d 6058 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒) = (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
1716mpoeq3dva 7485 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)) = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)))
18 ptval2.3 . . . . . . . 8 𝐺 = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
1917, 18eqtr4di 2790 . . . . . . 7 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)) = 𝐺)
2019rneqd 5937 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)) = ran 𝐺)
2112, 20uneq12d 4164 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ ({X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} βˆͺ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))) = ({𝑋} βˆͺ ran 𝐺))
2221fveq2d 6895 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (fiβ€˜({X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} βˆͺ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)))) = (fiβ€˜({𝑋} βˆͺ ran 𝐺)))
238, 22eqtrd 2772 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))} = (fiβ€˜({𝑋} βˆͺ ran 𝐺)))
2423fveq2d 6895 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ ran 𝐺))))
256, 24eqtrd 2772 1 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ 𝐽 = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ ran 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3945   βˆͺ cun 3946  {csn 4628  βˆͺ cuni 4908   ↦ cmpt 5231  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543   ∈ cmpo 7410  Xcixp 8890  Fincfn 8938  ficfi 9404  topGenctg 17382  βˆtcpt 17383  Topctop 22394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-1o 8465  df-er 8702  df-ixp 8891  df-en 8939  df-dom 8940  df-fin 8942  df-fi 9405  df-topgen 17388  df-pt 17389  df-top 22395  df-bases 22448
This theorem is referenced by:  ptrescn  23142  ptrest  36482
  Copyright terms: Public domain W3C validator