MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Visualization version   GIF version

Theorem ptval2 23456
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1 𝐽 = (∏tβ€˜πΉ)
ptval2.2 𝑋 = βˆͺ 𝐽
ptval2.3 𝐺 = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
Assertion
Ref Expression
ptval2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ 𝐽 = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ ran 𝐺))))
Distinct variable groups:   𝑒,π‘˜,𝑀,𝐴   π‘˜,𝐹,𝑒,𝑀   π‘˜,𝑉,𝑒,𝑀   𝑀,𝑋
Allowed substitution hints:   𝐺(𝑀,𝑒,π‘˜)   𝐽(𝑀,𝑒,π‘˜)   𝑋(𝑒,π‘˜)

Proof of Theorem ptval2
Dummy variables 𝑔 𝑛 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6710 . . 3 (𝐹:𝐴⟢Top β†’ 𝐹 Fn 𝐴)
2 ptval2.1 . . . 4 𝐽 = (∏tβ€˜πΉ)
3 eqid 2726 . . . . 5 {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))} = {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}
43ptval 23425 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ (∏tβ€˜πΉ) = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}))
52, 4eqtrid 2778 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) β†’ 𝐽 = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}))
61, 5sylan2 592 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ 𝐽 = (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}))
7 eqid 2726 . . . . 5 X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)
83, 7ptbasfi 23436 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))} = (fiβ€˜({X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} βˆͺ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)))))
92ptuni 23449 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = βˆͺ 𝐽)
10 ptval2.2 . . . . . . . 8 𝑋 = βˆͺ 𝐽
119, 10eqtr4di 2784 . . . . . . 7 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
1211sneqd 4635 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ {X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} = {𝑋})
13113ad2ant1 1130 . . . . . . . . . . . 12 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
1413mpteq1d 5236 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ (𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) = (𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)))
1514cnveqd 5868 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) = β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)))
1615imaeq1d 6051 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) ∧ π‘˜ ∈ 𝐴 ∧ 𝑒 ∈ (πΉβ€˜π‘˜)) β†’ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒) = (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
1716mpoeq3dva 7481 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)) = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)))
18 ptval2.3 . . . . . . . 8 𝐺 = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ 𝑋 ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
1917, 18eqtr4di 2784 . . . . . . 7 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)) = 𝐺)
2019rneqd 5930 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)) = ran 𝐺)
2112, 20uneq12d 4159 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ ({X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} βˆͺ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))) = ({𝑋} βˆͺ ran 𝐺))
2221fveq2d 6888 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (fiβ€˜({X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›)} βˆͺ ran (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)))) = (fiβ€˜({𝑋} βˆͺ ran 𝐺)))
238, 22eqtrd 2766 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ {π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))} = (fiβ€˜({𝑋} βˆͺ ran 𝐺)))
2423fveq2d 6888 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn 𝐴 ∧ βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (πΉβ€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (𝐴 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (πΉβ€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ 𝐴 (π‘”β€˜π‘¦))}) = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ ran 𝐺))))
256, 24eqtrd 2766 1 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ 𝐽 = (topGenβ€˜(fiβ€˜({𝑋} βˆͺ ran 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2703  βˆ€wral 3055  βˆƒwrex 3064   βˆ– cdif 3940   βˆͺ cun 3941  {csn 4623  βˆͺ cuni 4902   ↦ cmpt 5224  β—‘ccnv 5668  ran crn 5670   β€œ cima 5672   Fn wfn 6531  βŸΆwf 6532  β€˜cfv 6536   ∈ cmpo 7406  Xcixp 8890  Fincfn 8938  ficfi 9404  topGenctg 17390  βˆtcpt 17391  Topctop 22746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8464  df-er 8702  df-ixp 8891  df-en 8939  df-dom 8940  df-fin 8942  df-fi 9405  df-topgen 17396  df-pt 17397  df-top 22747  df-bases 22800
This theorem is referenced by:  ptrescn  23494  ptrest  36998
  Copyright terms: Public domain W3C validator