Step | Hyp | Ref
| Expression |
1 | | ffn 6600 |
. . 3
⊢ (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴) |
2 | | ptval2.1 |
. . . 4
⊢ 𝐽 =
(∏t‘𝐹) |
3 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
4 | 3 | ptval 22721 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
5 | 2, 4 | eqtrid 2790 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
6 | 1, 5 | sylan2 593 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
7 | | eqid 2738 |
. . . . 5
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
8 | 3, 7 | ptbasfi 22732 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = (fi‘({X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛)} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢))))) |
9 | 2 | ptuni 22745 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
10 | | ptval2.2 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
11 | 9, 10 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
12 | 11 | sneqd 4573 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛)} = {𝑋}) |
13 | 11 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝑘)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
14 | 13 | mpteq1d 5169 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝑘)) → (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘))) |
15 | 14 | cnveqd 5784 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝑘)) → ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) = ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘))) |
16 | 15 | imaeq1d 5968 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝑘)) → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
17 | 16 | mpoeq3dva 7352 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
18 | | ptval2.3 |
. . . . . . . 8
⊢ 𝐺 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
19 | 17, 18 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) = 𝐺) |
20 | 19 | rneqd 5847 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) = ran 𝐺) |
21 | 12, 20 | uneq12d 4098 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛)} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢))) = ({𝑋} ∪ ran 𝐺)) |
22 | 21 | fveq2d 6778 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘({X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛)} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)))) = (fi‘({𝑋} ∪ ran 𝐺))) |
23 | 8, 22 | eqtrd 2778 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = (fi‘({𝑋} ∪ ran 𝐺))) |
24 | 23 | fveq2d 6778 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) = (topGen‘(fi‘({𝑋} ∪ ran 𝐺)))) |
25 | 6, 24 | eqtrd 2778 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺)))) |