MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Visualization version   GIF version

Theorem ptval2 22203
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1 𝐽 = (∏t𝐹)
ptval2.2 𝑋 = 𝐽
ptval2.3 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
Assertion
Ref Expression
ptval2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Distinct variable groups:   𝑢,𝑘,𝑤,𝐴   𝑘,𝐹,𝑢,𝑤   𝑘,𝑉,𝑢,𝑤   𝑤,𝑋
Allowed substitution hints:   𝐺(𝑤,𝑢,𝑘)   𝐽(𝑤,𝑢,𝑘)   𝑋(𝑢,𝑘)

Proof of Theorem ptval2
Dummy variables 𝑔 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6508 . . 3 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
2 ptval2.1 . . . 4 𝐽 = (∏t𝐹)
3 eqid 2821 . . . . 5 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
43ptval 22172 . . . 4 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
52, 4syl5eq 2868 . . 3 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
61, 5sylan2 594 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
7 eqid 2821 . . . . 5 X𝑛𝐴 (𝐹𝑛) = X𝑛𝐴 (𝐹𝑛)
83, 7ptbasfi 22183 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
92ptuni 22196 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
10 ptval2.2 . . . . . . . 8 𝑋 = 𝐽
119, 10syl6eqr 2874 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1211sneqd 4572 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → {X𝑛𝐴 (𝐹𝑛)} = {𝑋})
13113ad2ant1 1129 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
1413mpteq1d 5147 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1514cnveqd 5740 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘)))
1615imaeq1d 5922 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴𝑢 ∈ (𝐹𝑘)) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1716mpoeq3dva 7225 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
18 ptval2.3 . . . . . . . 8 𝐺 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1917, 18syl6eqr 2874 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = 𝐺)
2019rneqd 5802 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran 𝐺)
2112, 20uneq12d 4139 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({𝑋} ∪ ran 𝐺))
2221fveq2d 6668 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({X𝑛𝐴 (𝐹𝑛)} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({𝑋} ∪ ran 𝐺)))
238, 22eqtrd 2856 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = (fi‘({𝑋} ∪ ran 𝐺)))
2423fveq2d 6668 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
256, 24eqtrd 2856 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wral 3138  wrex 3139  cdif 3932  cun 3933  {csn 4560   cuni 4831  cmpt 5138  ccnv 5548  ran crn 5550  cima 5552   Fn wfn 6344  wf 6345  cfv 6349  cmpo 7152  Xcixp 8455  Fincfn 8503  ficfi 8868  topGenctg 16705  tcpt 16706  Topctop 21495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ixp 8456  df-en 8504  df-dom 8505  df-fin 8507  df-fi 8869  df-topgen 16711  df-pt 16712  df-top 21496  df-bases 21548
This theorem is referenced by:  ptrescn  22241  ptrest  34885
  Copyright terms: Public domain W3C validator