Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imastps | Structured version Visualization version GIF version |
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imastps.r | ⊢ (𝜑 → 𝑅 ∈ TopSp) |
Ref | Expression |
---|---|
imastps | ⊢ (𝜑 → 𝑈 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imastps.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imastps.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imastps.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ TopSp) | |
5 | eqid 2736 | . . . 4 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
6 | eqid 2736 | . . . 4 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imastopn 22951 | . . 3 ⊢ (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹)) |
8 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 5 | istps 22163 | . . . . . . 7 ⊢ (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
10 | 4, 9 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
11 | 2 | fveq2d 6815 | . . . . . 6 ⊢ (𝜑 → (TopOn‘𝑉) = (TopOn‘(Base‘𝑅))) |
12 | 10, 11 | eleqtrrd 2840 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘𝑉)) |
13 | qtoptopon 22935 | . . . . 5 ⊢ (((TopOpen‘𝑅) ∈ (TopOn‘𝑉) ∧ 𝐹:𝑉–onto→𝐵) → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵)) | |
14 | 12, 3, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵)) |
15 | 1, 2, 3, 4 | imasbas 17297 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
16 | 15 | fveq2d 6815 | . . . 4 ⊢ (𝜑 → (TopOn‘𝐵) = (TopOn‘(Base‘𝑈))) |
17 | 14, 16 | eleqtrd 2839 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘(Base‘𝑈))) |
18 | 7, 17 | eqeltrd 2837 | . 2 ⊢ (𝜑 → (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈))) |
19 | eqid 2736 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
20 | 19, 6 | istps 22163 | . 2 ⊢ (𝑈 ∈ TopSp ↔ (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈))) |
21 | 18, 20 | sylibr 233 | 1 ⊢ (𝜑 → 𝑈 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 –onto→wfo 6463 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 TopOpenctopn 17206 qTop cqtop 17288 “s cimas 17289 TopOnctopon 22139 TopSpctps 22161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-struct 16922 df-slot 16957 df-ndx 16969 df-base 16987 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-ip 17054 df-tset 17055 df-ple 17056 df-ds 17058 df-rest 17207 df-topn 17208 df-qtop 17292 df-imas 17293 df-top 22123 df-topon 22140 df-topsp 22162 |
This theorem is referenced by: qustps 22953 xpstps 23041 |
Copyright terms: Public domain | W3C validator |