![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imastps | Structured version Visualization version GIF version |
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imastps.r | ⊢ (𝜑 → 𝑅 ∈ TopSp) |
Ref | Expression |
---|---|
imastps | ⊢ (𝜑 → 𝑈 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imastps.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imastps.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imastps.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ TopSp) | |
5 | eqid 2778 | . . . 4 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
6 | eqid 2778 | . . . 4 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imastopn 21943 | . . 3 ⊢ (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹)) |
8 | eqid 2778 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 5 | istps 21157 | . . . . . . 7 ⊢ (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
10 | 4, 9 | sylib 210 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
11 | 2 | fveq2d 6452 | . . . . . 6 ⊢ (𝜑 → (TopOn‘𝑉) = (TopOn‘(Base‘𝑅))) |
12 | 10, 11 | eleqtrrd 2862 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘𝑉)) |
13 | qtoptopon 21927 | . . . . 5 ⊢ (((TopOpen‘𝑅) ∈ (TopOn‘𝑉) ∧ 𝐹:𝑉–onto→𝐵) → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵)) | |
14 | 12, 3, 13 | syl2anc 579 | . . . 4 ⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵)) |
15 | 1, 2, 3, 4 | imasbas 16569 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
16 | 15 | fveq2d 6452 | . . . 4 ⊢ (𝜑 → (TopOn‘𝐵) = (TopOn‘(Base‘𝑈))) |
17 | 14, 16 | eleqtrd 2861 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘(Base‘𝑈))) |
18 | 7, 17 | eqeltrd 2859 | . 2 ⊢ (𝜑 → (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈))) |
19 | eqid 2778 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
20 | 19, 6 | istps 21157 | . 2 ⊢ (𝑈 ∈ TopSp ↔ (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈))) |
21 | 18, 20 | sylibr 226 | 1 ⊢ (𝜑 → 𝑈 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 –onto→wfo 6135 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 TopOpenctopn 16479 qTop cqtop 16560 “s cimas 16561 TopOnctopon 21133 TopSpctps 21155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-rest 16480 df-topn 16481 df-qtop 16564 df-imas 16565 df-top 21117 df-topon 21134 df-topsp 21156 |
This theorem is referenced by: qustps 21945 xpstps 22033 |
Copyright terms: Public domain | W3C validator |