MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastps Structured version   Visualization version   GIF version

Theorem imastps 21944
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
imastps.u (𝜑𝑈 = (𝐹s 𝑅))
imastps.v (𝜑𝑉 = (Base‘𝑅))
imastps.f (𝜑𝐹:𝑉onto𝐵)
imastps.r (𝜑𝑅 ∈ TopSp)
Assertion
Ref Expression
imastps (𝜑𝑈 ∈ TopSp)

Proof of Theorem imastps
StepHypRef Expression
1 imastps.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imastps.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imastps.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imastps.r . . . 4 (𝜑𝑅 ∈ TopSp)
5 eqid 2778 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2778 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
71, 2, 3, 4, 5, 6imastopn 21943 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
8 eqid 2778 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
98, 5istps 21157 . . . . . . 7 (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
104, 9sylib 210 . . . . . 6 (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
112fveq2d 6452 . . . . . 6 (𝜑 → (TopOn‘𝑉) = (TopOn‘(Base‘𝑅)))
1210, 11eleqtrrd 2862 . . . . 5 (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘𝑉))
13 qtoptopon 21927 . . . . 5 (((TopOpen‘𝑅) ∈ (TopOn‘𝑉) ∧ 𝐹:𝑉onto𝐵) → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵))
1412, 3, 13syl2anc 579 . . . 4 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵))
151, 2, 3, 4imasbas 16569 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1615fveq2d 6452 . . . 4 (𝜑 → (TopOn‘𝐵) = (TopOn‘(Base‘𝑈)))
1714, 16eleqtrd 2861 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘(Base‘𝑈)))
187, 17eqeltrd 2859 . 2 (𝜑 → (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈)))
19 eqid 2778 . . 3 (Base‘𝑈) = (Base‘𝑈)
2019, 6istps 21157 . 2 (𝑈 ∈ TopSp ↔ (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈)))
2118, 20sylibr 226 1 (𝜑𝑈 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  ontowfo 6135  cfv 6137  (class class class)co 6924  Basecbs 16266  TopOpenctopn 16479   qTop cqtop 16560  s cimas 16561  TopOnctopon 21133  TopSpctps 21155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-rest 16480  df-topn 16481  df-qtop 16564  df-imas 16565  df-top 21117  df-topon 21134  df-topsp 21156
This theorem is referenced by:  qustps  21945  xpstps  22033
  Copyright terms: Public domain W3C validator