MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastps Structured version   Visualization version   GIF version

Theorem imastps 23675
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
imastps.u (𝜑𝑈 = (𝐹s 𝑅))
imastps.v (𝜑𝑉 = (Base‘𝑅))
imastps.f (𝜑𝐹:𝑉onto𝐵)
imastps.r (𝜑𝑅 ∈ TopSp)
Assertion
Ref Expression
imastps (𝜑𝑈 ∈ TopSp)

Proof of Theorem imastps
StepHypRef Expression
1 imastps.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imastps.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imastps.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imastps.r . . . 4 (𝜑𝑅 ∈ TopSp)
5 eqid 2734 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2734 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
71, 2, 3, 4, 5, 6imastopn 23674 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
8 eqid 2734 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
98, 5istps 22888 . . . . . . 7 (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
104, 9sylib 218 . . . . . 6 (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
112fveq2d 6890 . . . . . 6 (𝜑 → (TopOn‘𝑉) = (TopOn‘(Base‘𝑅)))
1210, 11eleqtrrd 2836 . . . . 5 (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘𝑉))
13 qtoptopon 23658 . . . . 5 (((TopOpen‘𝑅) ∈ (TopOn‘𝑉) ∧ 𝐹:𝑉onto𝐵) → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵))
1412, 3, 13syl2anc 584 . . . 4 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵))
151, 2, 3, 4imasbas 17528 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1615fveq2d 6890 . . . 4 (𝜑 → (TopOn‘𝐵) = (TopOn‘(Base‘𝑈)))
1714, 16eleqtrd 2835 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘(Base‘𝑈)))
187, 17eqeltrd 2833 . 2 (𝜑 → (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈)))
19 eqid 2734 . . 3 (Base‘𝑈) = (Base‘𝑈)
2019, 6istps 22888 . 2 (𝑈 ∈ TopSp ↔ (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈)))
2118, 20sylibr 234 1 (𝜑𝑈 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  ontowfo 6539  cfv 6541  (class class class)co 7413  Basecbs 17229  TopOpenctopn 17437   qTop cqtop 17519  s cimas 17520  TopOnctopon 22864  TopSpctps 22886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-rest 17438  df-topn 17439  df-qtop 17523  df-imas 17524  df-top 22848  df-topon 22865  df-topsp 22887
This theorem is referenced by:  qustps  23676  xpstps  23764
  Copyright terms: Public domain W3C validator