MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastps Structured version   Visualization version   GIF version

Theorem imastps 23614
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
imastps.u (𝜑𝑈 = (𝐹s 𝑅))
imastps.v (𝜑𝑉 = (Base‘𝑅))
imastps.f (𝜑𝐹:𝑉onto𝐵)
imastps.r (𝜑𝑅 ∈ TopSp)
Assertion
Ref Expression
imastps (𝜑𝑈 ∈ TopSp)

Proof of Theorem imastps
StepHypRef Expression
1 imastps.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imastps.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imastps.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imastps.r . . . 4 (𝜑𝑅 ∈ TopSp)
5 eqid 2730 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2730 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
71, 2, 3, 4, 5, 6imastopn 23613 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
8 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
98, 5istps 22827 . . . . . . 7 (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
104, 9sylib 218 . . . . . 6 (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
112fveq2d 6864 . . . . . 6 (𝜑 → (TopOn‘𝑉) = (TopOn‘(Base‘𝑅)))
1210, 11eleqtrrd 2832 . . . . 5 (𝜑 → (TopOpen‘𝑅) ∈ (TopOn‘𝑉))
13 qtoptopon 23597 . . . . 5 (((TopOpen‘𝑅) ∈ (TopOn‘𝑉) ∧ 𝐹:𝑉onto𝐵) → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵))
1412, 3, 13syl2anc 584 . . . 4 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘𝐵))
151, 2, 3, 4imasbas 17481 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1615fveq2d 6864 . . . 4 (𝜑 → (TopOn‘𝐵) = (TopOn‘(Base‘𝑈)))
1714, 16eleqtrd 2831 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) ∈ (TopOn‘(Base‘𝑈)))
187, 17eqeltrd 2829 . 2 (𝜑 → (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈)))
19 eqid 2730 . . 3 (Base‘𝑈) = (Base‘𝑈)
2019, 6istps 22827 . 2 (𝑈 ∈ TopSp ↔ (TopOpen‘𝑈) ∈ (TopOn‘(Base‘𝑈)))
2118, 20sylibr 234 1 (𝜑𝑈 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ontowfo 6511  cfv 6513  (class class class)co 7389  Basecbs 17185  TopOpenctopn 17390   qTop cqtop 17472  s cimas 17473  TopOnctopon 22803  TopSpctps 22825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-rest 17391  df-topn 17392  df-qtop 17476  df-imas 17477  df-top 22787  df-topon 22804  df-topsp 22826
This theorem is referenced by:  qustps  23615  xpstps  23703
  Copyright terms: Public domain W3C validator