![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imastps | Structured version Visualization version GIF version |
Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | β’ (π β π = (πΉ βs π )) |
imastps.v | β’ (π β π = (Baseβπ )) |
imastps.f | β’ (π β πΉ:πβontoβπ΅) |
imastps.r | β’ (π β π β TopSp) |
Ref | Expression |
---|---|
imastps | β’ (π β π β TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . 4 β’ (π β π = (πΉ βs π )) | |
2 | imastps.v | . . . 4 β’ (π β π = (Baseβπ )) | |
3 | imastps.f | . . . 4 β’ (π β πΉ:πβontoβπ΅) | |
4 | imastps.r | . . . 4 β’ (π β π β TopSp) | |
5 | eqid 2724 | . . . 4 β’ (TopOpenβπ ) = (TopOpenβπ ) | |
6 | eqid 2724 | . . . 4 β’ (TopOpenβπ) = (TopOpenβπ) | |
7 | 1, 2, 3, 4, 5, 6 | imastopn 23548 | . . 3 β’ (π β (TopOpenβπ) = ((TopOpenβπ ) qTop πΉ)) |
8 | eqid 2724 | . . . . . . . 8 β’ (Baseβπ ) = (Baseβπ ) | |
9 | 8, 5 | istps 22760 | . . . . . . 7 β’ (π β TopSp β (TopOpenβπ ) β (TopOnβ(Baseβπ ))) |
10 | 4, 9 | sylib 217 | . . . . . 6 β’ (π β (TopOpenβπ ) β (TopOnβ(Baseβπ ))) |
11 | 2 | fveq2d 6886 | . . . . . 6 β’ (π β (TopOnβπ) = (TopOnβ(Baseβπ ))) |
12 | 10, 11 | eleqtrrd 2828 | . . . . 5 β’ (π β (TopOpenβπ ) β (TopOnβπ)) |
13 | qtoptopon 23532 | . . . . 5 β’ (((TopOpenβπ ) β (TopOnβπ) β§ πΉ:πβontoβπ΅) β ((TopOpenβπ ) qTop πΉ) β (TopOnβπ΅)) | |
14 | 12, 3, 13 | syl2anc 583 | . . . 4 β’ (π β ((TopOpenβπ ) qTop πΉ) β (TopOnβπ΅)) |
15 | 1, 2, 3, 4 | imasbas 17459 | . . . . 5 β’ (π β π΅ = (Baseβπ)) |
16 | 15 | fveq2d 6886 | . . . 4 β’ (π β (TopOnβπ΅) = (TopOnβ(Baseβπ))) |
17 | 14, 16 | eleqtrd 2827 | . . 3 β’ (π β ((TopOpenβπ ) qTop πΉ) β (TopOnβ(Baseβπ))) |
18 | 7, 17 | eqeltrd 2825 | . 2 β’ (π β (TopOpenβπ) β (TopOnβ(Baseβπ))) |
19 | eqid 2724 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
20 | 19, 6 | istps 22760 | . 2 β’ (π β TopSp β (TopOpenβπ) β (TopOnβ(Baseβπ))) |
21 | 18, 20 | sylibr 233 | 1 β’ (π β π β TopSp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βontoβwfo 6532 βcfv 6534 (class class class)co 7402 Basecbs 17145 TopOpenctopn 17368 qTop cqtop 17450 βs cimas 17451 TopOnctopon 22736 TopSpctps 22758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-fz 13483 df-struct 17081 df-slot 17116 df-ndx 17128 df-base 17146 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-rest 17369 df-topn 17370 df-qtop 17454 df-imas 17455 df-top 22720 df-topon 22737 df-topsp 22759 |
This theorem is referenced by: qustps 23550 xpstps 23638 |
Copyright terms: Public domain | W3C validator |