![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankelg | Structured version Visualization version GIF version |
Description: The membership relation is inherited by the rank function. Closed form of rankel 9862. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
rankelg | β’ ((π΅ β π β§ π΄ β π΅) β (rankβπ΄) β (rankβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2818 | . . . 4 β’ (π¦ = π΅ β (π΄ β π¦ β π΄ β π΅)) | |
2 | fveq2 6897 | . . . . 5 β’ (π¦ = π΅ β (rankβπ¦) = (rankβπ΅)) | |
3 | 2 | eleq2d 2815 | . . . 4 β’ (π¦ = π΅ β ((rankβπ΄) β (rankβπ¦) β (rankβπ΄) β (rankβπ΅))) |
4 | 1, 3 | imbi12d 344 | . . 3 β’ (π¦ = π΅ β ((π΄ β π¦ β (rankβπ΄) β (rankβπ¦)) β (π΄ β π΅ β (rankβπ΄) β (rankβπ΅)))) |
5 | vex 3475 | . . . 4 β’ π¦ β V | |
6 | 5 | rankel 9862 | . . 3 β’ (π΄ β π¦ β (rankβπ΄) β (rankβπ¦)) |
7 | 4, 6 | vtoclg 3540 | . 2 β’ (π΅ β π β (π΄ β π΅ β (rankβπ΄) β (rankβπ΅))) |
8 | 7 | imp 406 | 1 β’ ((π΅ β π β§ π΄ β π΅) β (rankβπ΄) β (rankβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βcfv 6548 rankcrnk 9786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-reg 9615 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-r1 9787 df-rank 9788 |
This theorem is referenced by: hfelhf 35777 |
Copyright terms: Public domain | W3C validator |