![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankelg | Structured version Visualization version GIF version |
Description: The membership relation is inherited by the rank function. Closed form of rankel 9886. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
rankelg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2830 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
2 | fveq2 6914 | . . . . 5 ⊢ (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵)) | |
3 | 2 | eleq2d 2827 | . . . 4 ⊢ (𝑦 = 𝐵 → ((rank‘𝐴) ∈ (rank‘𝑦) ↔ (rank‘𝐴) ∈ (rank‘𝐵))) |
4 | 1, 3 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑦 → (rank‘𝐴) ∈ (rank‘𝑦)) ↔ (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))) |
5 | vex 3485 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | 5 | rankel 9886 | . . 3 ⊢ (𝐴 ∈ 𝑦 → (rank‘𝐴) ∈ (rank‘𝑦)) |
7 | 4, 6 | vtoclg 3557 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
8 | 7 | imp 406 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 rankcrnk 9810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-reg 9639 ax-inf2 9688 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-r1 9811 df-rank 9812 |
This theorem is referenced by: hfelhf 36176 |
Copyright terms: Public domain | W3C validator |