Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankelg Structured version   Visualization version   GIF version

Theorem rankelg 36128
Description: The membership relation is inherited by the rank function. Closed form of rankel 9861. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
rankelg ((𝐵𝑉𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))

Proof of Theorem rankelg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2822 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
2 fveq2 6886 . . . . 5 (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵))
32eleq2d 2819 . . . 4 (𝑦 = 𝐵 → ((rank‘𝐴) ∈ (rank‘𝑦) ↔ (rank‘𝐴) ∈ (rank‘𝐵)))
41, 3imbi12d 344 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦 → (rank‘𝐴) ∈ (rank‘𝑦)) ↔ (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))))
5 vex 3467 . . . 4 𝑦 ∈ V
65rankel 9861 . . 3 (𝐴𝑦 → (rank‘𝐴) ∈ (rank‘𝑦))
74, 6vtoclg 3537 . 2 (𝐵𝑉 → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))
87imp 406 1 ((𝐵𝑉𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6541  rankcrnk 9785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-r1 9786  df-rank 9787
This theorem is referenced by:  hfelhf  36141
  Copyright terms: Public domain W3C validator