Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankelg Structured version   Visualization version   GIF version

Theorem rankelg 36132
Description: The membership relation is inherited by the rank function. Closed form of rankel 9851. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
rankelg ((𝐵𝑉𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))

Proof of Theorem rankelg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2823 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
2 fveq2 6875 . . . . 5 (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵))
32eleq2d 2820 . . . 4 (𝑦 = 𝐵 → ((rank‘𝐴) ∈ (rank‘𝑦) ↔ (rank‘𝐴) ∈ (rank‘𝐵)))
41, 3imbi12d 344 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦 → (rank‘𝐴) ∈ (rank‘𝑦)) ↔ (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))))
5 vex 3463 . . . 4 𝑦 ∈ V
65rankel 9851 . . 3 (𝐴𝑦 → (rank‘𝐴) ∈ (rank‘𝑦))
74, 6vtoclg 3533 . 2 (𝐵𝑉 → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))
87imp 406 1 ((𝐵𝑉𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6530  rankcrnk 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-r1 9776  df-rank 9777
This theorem is referenced by:  hfelhf  36145
  Copyright terms: Public domain W3C validator