Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankpwg | Structured version Visualization version GIF version |
Description: The rank of a power set. Closed form of rankpw 9601. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
rankpwg | ⊢ (𝐴 ∈ 𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4549 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | fveq2d 6778 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴)) |
3 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
4 | suceq 6331 | . . . 4 ⊢ ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴)) |
6 | 2, 5 | eqeq12d 2754 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴))) |
7 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
8 | 7 | rankpw 9601 | . 2 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
9 | 6, 8 | vtoclg 3505 | 1 ⊢ (𝐴 ∈ 𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 𝒫 cpw 4533 suc csuc 6268 ‘cfv 6433 rankcrnk 9521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-rank 9523 |
This theorem is referenced by: hfpw 34487 |
Copyright terms: Public domain | W3C validator |