| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankpwg | Structured version Visualization version GIF version | ||
| Description: The rank of a power set. Closed form of rankpw 9802. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| rankpwg | ⊢ (𝐴 ∈ 𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4579 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | fveq2d 6864 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴)) |
| 3 | fveq2 6860 | . . . 4 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
| 4 | suceq 6401 | . . . 4 ⊢ ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴)) |
| 6 | 2, 5 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴))) |
| 7 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | 7 | rankpw 9802 | . 2 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
| 9 | 6, 8 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 𝒫 cpw 4565 suc csuc 6336 ‘cfv 6513 rankcrnk 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-reg 9551 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-r1 9723 df-rank 9724 |
| This theorem is referenced by: hfpw 36168 |
| Copyright terms: Public domain | W3C validator |