Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankpwg Structured version   Visualization version   GIF version

Theorem rankpwg 36152
Description: The rank of a power set. Closed form of rankpw 9802. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
rankpwg (𝐴𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴))

Proof of Theorem rankpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4579 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21fveq2d 6864 . . 3 (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴))
3 fveq2 6860 . . . 4 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
4 suceq 6401 . . . 4 ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴))
53, 4syl 17 . . 3 (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴))
62, 5eqeq12d 2746 . 2 (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴)))
7 vex 3454 . . 3 𝑥 ∈ V
87rankpw 9802 . 2 (rank‘𝒫 𝑥) = suc (rank‘𝑥)
96, 8vtoclg 3523 1 (𝐴𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  𝒫 cpw 4565  suc csuc 6336  cfv 6513  rankcrnk 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-r1 9723  df-rank 9724
This theorem is referenced by:  hfpw  36168
  Copyright terms: Public domain W3C validator