![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankpwg | Structured version Visualization version GIF version |
Description: The rank of a power set. Closed form of rankpw 9837. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
rankpwg | β’ (π΄ β π β (rankβπ« π΄) = suc (rankβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4616 | . . . 4 β’ (π₯ = π΄ β π« π₯ = π« π΄) | |
2 | 1 | fveq2d 6895 | . . 3 β’ (π₯ = π΄ β (rankβπ« π₯) = (rankβπ« π΄)) |
3 | fveq2 6891 | . . . 4 β’ (π₯ = π΄ β (rankβπ₯) = (rankβπ΄)) | |
4 | suceq 6430 | . . . 4 β’ ((rankβπ₯) = (rankβπ΄) β suc (rankβπ₯) = suc (rankβπ΄)) | |
5 | 3, 4 | syl 17 | . . 3 β’ (π₯ = π΄ β suc (rankβπ₯) = suc (rankβπ΄)) |
6 | 2, 5 | eqeq12d 2748 | . 2 β’ (π₯ = π΄ β ((rankβπ« π₯) = suc (rankβπ₯) β (rankβπ« π΄) = suc (rankβπ΄))) |
7 | vex 3478 | . . 3 β’ π₯ β V | |
8 | 7 | rankpw 9837 | . 2 β’ (rankβπ« π₯) = suc (rankβπ₯) |
9 | 6, 8 | vtoclg 3556 | 1 β’ (π΄ β π β (rankβπ« π΄) = suc (rankβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 π« cpw 4602 suc csuc 6366 βcfv 6543 rankcrnk 9757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-r1 9758 df-rank 9759 |
This theorem is referenced by: hfpw 35152 |
Copyright terms: Public domain | W3C validator |