Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankeq0 | Structured version Visualization version GIF version |
Description: A set is empty iff its rank is empty. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankeq0.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankeq0 | ⊢ (𝐴 = ∅ ↔ (rank‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankeq0.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | unir1 9674 | . . 3 ⊢ ∪ (𝑅1 “ On) = V | |
3 | 1, 2 | eleqtrri 2837 | . 2 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
4 | rankeq0b 9721 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝐴 = ∅ ↔ (rank‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ∅c0 4273 ∪ cuni 4856 “ cima 5627 Oncon0 6306 ‘cfv 6483 𝑅1cr1 9623 rankcrnk 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-reg 9453 ax-inf2 9502 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-r1 9625 df-rank 9626 |
This theorem is referenced by: rankxplim2 9741 rankxplim3 9742 rankxpsuc 9743 rank0 34609 rankeq1o 34610 |
Copyright terms: Public domain | W3C validator |