Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankun Structured version   Visualization version   GIF version

Theorem rankun 8997
 Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by NM, 26-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
ranksn.1 𝐴 ∈ V
rankun.2 𝐵 ∈ V
Assertion
Ref Expression
rankun (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))

Proof of Theorem rankun
StepHypRef Expression
1 ranksn.1 . . 3 𝐴 ∈ V
2 unir1 8954 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2906 . 2 𝐴 (𝑅1 “ On)
4 rankun.2 . . 3 𝐵 ∈ V
54, 2eleqtrri 2906 . 2 𝐵 (𝑅1 “ On)
6 rankunb 8991 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
73, 5, 6mp2an 685 1 (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1658   ∈ wcel 2166  Vcvv 3415   ∪ cun 3797  ∪ cuni 4659   “ cima 5346  Oncon0 5964  ‘cfv 6124  𝑅1cr1 8903  rankcrnk 8904 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-reg 8767  ax-inf2 8816 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-r1 8905  df-rank 8906 This theorem is referenced by:  ranksuc  9006  rankelun  9013  rankelpr  9014  rankung  32813
 Copyright terms: Public domain W3C validator