MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankun Structured version   Visualization version   GIF version

Theorem rankun 9282
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by NM, 26-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
ranksn.1 𝐴 ∈ V
rankun.2 𝐵 ∈ V
Assertion
Ref Expression
rankun (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))

Proof of Theorem rankun
StepHypRef Expression
1 ranksn.1 . . 3 𝐴 ∈ V
2 unir1 9239 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2915 . 2 𝐴 (𝑅1 “ On)
4 rankun.2 . . 3 𝐵 ∈ V
54, 2eleqtrri 2915 . 2 𝐵 (𝑅1 “ On)
6 rankunb 9276 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
73, 5, 6mp2an 691 1 (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  Vcvv 3480  cun 3917   cuni 4824  cima 5545  Oncon0 6178  cfv 6343  𝑅1cr1 9188  rankcrnk 9189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-reg 9053  ax-inf2 9101
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-r1 9190  df-rank 9191
This theorem is referenced by:  ranksuc  9291  rankelun  9298  rankelpr  9299  rankung  33684
  Copyright terms: Public domain W3C validator