Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankun | Structured version Visualization version GIF version |
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by NM, 26-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
ranksn.1 | ⊢ 𝐴 ∈ V |
rankun.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
rankun | ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ranksn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | unir1 9572 | . . 3 ⊢ ∪ (𝑅1 “ On) = V | |
3 | 1, 2 | eleqtrri 2840 | . 2 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
4 | rankun.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 4, 2 | eleqtrri 2840 | . 2 ⊢ 𝐵 ∈ ∪ (𝑅1 “ On) |
6 | rankunb 9609 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) | |
7 | 3, 5, 6 | mp2an 689 | 1 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∪ cun 3890 ∪ cuni 4845 “ cima 5593 Oncon0 6265 ‘cfv 6432 𝑅1cr1 9521 rankcrnk 9522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-reg 9329 ax-inf2 9377 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-r1 9523 df-rank 9524 |
This theorem is referenced by: ranksuc 9624 rankelun 9631 rankelpr 9632 rankung 34464 |
Copyright terms: Public domain | W3C validator |