Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reneg1lt0 | Structured version Visualization version GIF version |
Description: Lemma for sn-inelr 40746. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
reneg1lt0 | ⊢ (0 −ℝ 1) < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-0lt1 40743 | . 2 ⊢ 0 < 1 | |
2 | 1re 11077 | . . 3 ⊢ 1 ∈ ℝ | |
3 | relt0neg2 40737 | . . 3 ⊢ (1 ∈ ℝ → (0 < 1 ↔ (0 −ℝ 1) < 0)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 < 1 ↔ (0 −ℝ 1) < 0) |
5 | 1, 4 | mpbi 229 | 1 ⊢ (0 −ℝ 1) < 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 class class class wbr 5093 (class class class)co 7338 ℝcr 10972 0cc0 10973 1c1 10974 < clt 11111 −ℝ cresub 40659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-po 5533 df-so 5534 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 df-2 12138 df-3 12139 df-resub 40660 |
This theorem is referenced by: sn-inelr 40746 |
Copyright terms: Public domain | W3C validator |