Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdcan2 Structured version   Visualization version   GIF version

Theorem readdcan2 41588
Description: Commuted version of readdcan 11393 without ax-mulcom 11178. (Contributed by SN, 21-Feb-2024.)
Assertion
Ref Expression
readdcan2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem readdcan2
StepHypRef Expression
1 oveq1 7419 . . . . 5 ((𝐴 + 𝐶) = (𝐵 + 𝐶) → ((𝐴 + 𝐶) + (0 − 𝐶)) = ((𝐵 + 𝐶) + (0 − 𝐶)))
21adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 + 𝐶) = (𝐵 + 𝐶)) → ((𝐴 + 𝐶) + (0 − 𝐶)) = ((𝐵 + 𝐶) + (0 − 𝐶)))
3 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
43recnd 11247 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
5 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
65recnd 11247 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
7 rernegcl 41547 . . . . . . . . . 10 (𝐶 ∈ ℝ → (0 − 𝐶) ∈ ℝ)
87adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 − 𝐶) ∈ ℝ)
98recnd 11247 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 − 𝐶) ∈ ℂ)
104, 6, 9addassd 11241 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (0 − 𝐶)) = (𝐴 + (𝐶 + (0 − 𝐶))))
11 renegid 41549 . . . . . . . . 9 (𝐶 ∈ ℝ → (𝐶 + (0 − 𝐶)) = 0)
1211oveq2d 7428 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐴 + (𝐶 + (0 − 𝐶))) = (𝐴 + 0))
1312adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + (𝐶 + (0 − 𝐶))) = (𝐴 + 0))
14 readdrid 41585 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
1514adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 0) = 𝐴)
1610, 13, 153eqtrd 2775 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (0 − 𝐶)) = 𝐴)
17163adant2 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (0 − 𝐶)) = 𝐴)
1817adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 + 𝐶) = (𝐵 + 𝐶)) → ((𝐴 + 𝐶) + (0 − 𝐶)) = 𝐴)
19 simpl 482 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
2019recnd 11247 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
21 simpr 484 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2221recnd 11247 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
237adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 − 𝐶) ∈ ℝ)
2423recnd 11247 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 − 𝐶) ∈ ℂ)
2520, 22, 24addassd 11241 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + (0 − 𝐶)) = (𝐵 + (𝐶 + (0 − 𝐶))))
2611oveq2d 7428 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐵 + (𝐶 + (0 − 𝐶))) = (𝐵 + 0))
2726adantl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + (𝐶 + (0 − 𝐶))) = (𝐵 + 0))
28 readdrid 41585 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵)
2928adantr 480 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 0) = 𝐵)
3025, 27, 293eqtrd 2775 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + (0 − 𝐶)) = 𝐵)
31303adant1 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + (0 − 𝐶)) = 𝐵)
3231adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 + 𝐶) = (𝐵 + 𝐶)) → ((𝐵 + 𝐶) + (0 − 𝐶)) = 𝐵)
332, 18, 323eqtr3d 2779 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 + 𝐶) = (𝐵 + 𝐶)) → 𝐴 = 𝐵)
3433ex 412 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) → 𝐴 = 𝐵))
35 oveq1 7419 . 2 (𝐴 = 𝐵 → (𝐴 + 𝐶) = (𝐵 + 𝐶))
3634, 35impbid1 224 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  (class class class)co 7412  cr 11113  0cc0 11114   + caddc 11117   cresub 41541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-2 12280  df-3 12281  df-resub 41542
This theorem is referenced by:  renegid2  41589
  Copyright terms: Public domain W3C validator