MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgn0fv0 Structured version   Visualization version   GIF version

Theorem psgn0fv0 19421
Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.)
Assertion
Ref Expression
psgn0fv0 ((pmSgn‘∅)‘∅) = 1

Proof of Theorem psgn0fv0
StepHypRef Expression
1 0ex 5245 . 2 ∅ ∈ V
2 wrd0 14443 . 2 ∅ ∈ Word ran (pmTrsp‘∅)
3 eqid 2731 . . . . . 6 (0g‘(SymGrp‘∅)) = (0g‘(SymGrp‘∅))
43gsum0 18589 . . . . 5 ((SymGrp‘∅) Σg ∅) = (0g‘(SymGrp‘∅))
5 eqid 2731 . . . . . . . . 9 (SymGrp‘∅) = (SymGrp‘∅)
65symgid 19311 . . . . . . . 8 (∅ ∈ V → ( I ↾ ∅) = (0g‘(SymGrp‘∅)))
71, 6ax-mp 5 . . . . . . 7 ( I ↾ ∅) = (0g‘(SymGrp‘∅))
8 res0 5932 . . . . . . 7 ( I ↾ ∅) = ∅
97, 8eqtr3i 2756 . . . . . 6 (0g‘(SymGrp‘∅)) = ∅
109a1i 11 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (0g‘(SymGrp‘∅)) = ∅)
114, 10eqtr2id 2779 . . . 4 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ∅ = ((SymGrp‘∅) Σg ∅))
1211fveq2d 6826 . . 3 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)))
13 eqid 2731 . . . 4 ran (pmTrsp‘∅) = ran (pmTrsp‘∅)
14 eqid 2731 . . . 4 (pmSgn‘∅) = (pmSgn‘∅)
155, 13, 14psgnvalii 19419 . . 3 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)) = (-1↑(♯‘∅)))
16 hash0 14271 . . . . . 6 (♯‘∅) = 0
1716oveq2i 7357 . . . . 5 (-1↑(♯‘∅)) = (-1↑0)
18 neg1cn 12107 . . . . . 6 -1 ∈ ℂ
19 exp0 13969 . . . . . 6 (-1 ∈ ℂ → (-1↑0) = 1)
2018, 19ax-mp 5 . . . . 5 (-1↑0) = 1
2117, 20eqtri 2754 . . . 4 (-1↑(♯‘∅)) = 1
2221a1i 11 . . 3 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (-1↑(♯‘∅)) = 1)
2312, 15, 223eqtrd 2770 . 2 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = 1)
241, 2, 23mp2an 692 1 ((pmSgn‘∅)‘∅) = 1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283   I cid 5510  ran crn 5617  cres 5618  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004  -cneg 11342  cexp 13965  chash 14234  Word cword 14417  0gc0g 17340   Σg cgsu 17341  SymGrpcsymg 19279  pmTrspcpmtr 19351  pmSgncpsgn 19399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-splice 14654  df-reverse 14663  df-s2 14752  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-tset 17177  df-0g 17342  df-gsum 17343  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-efmnd 18774  df-grp 18846  df-minusg 18847  df-subg 19033  df-ghm 19123  df-gim 19169  df-oppg 19256  df-symg 19280  df-pmtr 19352  df-psgn 19401
This theorem is referenced by:  mdet0pr  22505
  Copyright terms: Public domain W3C validator