| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgn0fv0 | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.) |
| Ref | Expression |
|---|---|
| psgn0fv0 | ⊢ ((pmSgn‘∅)‘∅) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . 2 ⊢ ∅ ∈ V | |
| 2 | wrd0 14464 | . 2 ⊢ ∅ ∈ Word ran (pmTrsp‘∅) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (0g‘(SymGrp‘∅)) = (0g‘(SymGrp‘∅)) | |
| 4 | 3 | gsum0 18576 | . . . . 5 ⊢ ((SymGrp‘∅) Σg ∅) = (0g‘(SymGrp‘∅)) |
| 5 | eqid 2729 | . . . . . . . . 9 ⊢ (SymGrp‘∅) = (SymGrp‘∅) | |
| 6 | 5 | symgid 19298 | . . . . . . . 8 ⊢ (∅ ∈ V → ( I ↾ ∅) = (0g‘(SymGrp‘∅))) |
| 7 | 1, 6 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ ∅) = (0g‘(SymGrp‘∅)) |
| 8 | res0 5938 | . . . . . . 7 ⊢ ( I ↾ ∅) = ∅ | |
| 9 | 7, 8 | eqtr3i 2754 | . . . . . 6 ⊢ (0g‘(SymGrp‘∅)) = ∅ |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (0g‘(SymGrp‘∅)) = ∅) |
| 11 | 4, 10 | eqtr2id 2777 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ∅ = ((SymGrp‘∅) Σg ∅)) |
| 12 | 11 | fveq2d 6830 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅))) |
| 13 | eqid 2729 | . . . 4 ⊢ ran (pmTrsp‘∅) = ran (pmTrsp‘∅) | |
| 14 | eqid 2729 | . . . 4 ⊢ (pmSgn‘∅) = (pmSgn‘∅) | |
| 15 | 5, 13, 14 | psgnvalii 19406 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)) = (-1↑(♯‘∅))) |
| 16 | hash0 14292 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 17 | 16 | oveq2i 7364 | . . . . 5 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 18 | neg1cn 12131 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 19 | exp0 13990 | . . . . . 6 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (-1↑0) = 1 |
| 21 | 17, 20 | eqtri 2752 | . . . 4 ⊢ (-1↑(♯‘∅)) = 1 |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (-1↑(♯‘∅)) = 1) |
| 23 | 12, 15, 22 | 3eqtrd 2768 | . 2 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = 1) |
| 24 | 1, 2, 23 | mp2an 692 | 1 ⊢ ((pmSgn‘∅)‘∅) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 I cid 5517 ran crn 5624 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 -cneg 11366 ↑cexp 13986 ♯chash 14255 Word cword 14438 0gc0g 17361 Σg cgsu 17362 SymGrpcsymg 19266 pmTrspcpmtr 19338 pmSgncpsgn 19386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-tset 17198 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-subg 19020 df-ghm 19110 df-gim 19156 df-oppg 19243 df-symg 19267 df-pmtr 19339 df-psgn 19388 |
| This theorem is referenced by: mdet0pr 22495 |
| Copyright terms: Public domain | W3C validator |