| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgn0fv0 | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.) |
| Ref | Expression |
|---|---|
| psgn0fv0 | ⊢ ((pmSgn‘∅)‘∅) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . 2 ⊢ ∅ ∈ V | |
| 2 | wrd0 14562 | . 2 ⊢ ∅ ∈ Word ran (pmTrsp‘∅) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ (0g‘(SymGrp‘∅)) = (0g‘(SymGrp‘∅)) | |
| 4 | 3 | gsum0 18667 | . . . . 5 ⊢ ((SymGrp‘∅) Σg ∅) = (0g‘(SymGrp‘∅)) |
| 5 | eqid 2736 | . . . . . . . . 9 ⊢ (SymGrp‘∅) = (SymGrp‘∅) | |
| 6 | 5 | symgid 19387 | . . . . . . . 8 ⊢ (∅ ∈ V → ( I ↾ ∅) = (0g‘(SymGrp‘∅))) |
| 7 | 1, 6 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ ∅) = (0g‘(SymGrp‘∅)) |
| 8 | res0 5975 | . . . . . . 7 ⊢ ( I ↾ ∅) = ∅ | |
| 9 | 7, 8 | eqtr3i 2761 | . . . . . 6 ⊢ (0g‘(SymGrp‘∅)) = ∅ |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (0g‘(SymGrp‘∅)) = ∅) |
| 11 | 4, 10 | eqtr2id 2784 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ∅ = ((SymGrp‘∅) Σg ∅)) |
| 12 | 11 | fveq2d 6885 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅))) |
| 13 | eqid 2736 | . . . 4 ⊢ ran (pmTrsp‘∅) = ran (pmTrsp‘∅) | |
| 14 | eqid 2736 | . . . 4 ⊢ (pmSgn‘∅) = (pmSgn‘∅) | |
| 15 | 5, 13, 14 | psgnvalii 19495 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)) = (-1↑(♯‘∅))) |
| 16 | hash0 14390 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 17 | 16 | oveq2i 7421 | . . . . 5 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 18 | neg1cn 12359 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 19 | exp0 14088 | . . . . . 6 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (-1↑0) = 1 |
| 21 | 17, 20 | eqtri 2759 | . . . 4 ⊢ (-1↑(♯‘∅)) = 1 |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (-1↑(♯‘∅)) = 1) |
| 23 | 12, 15, 22 | 3eqtrd 2775 | . 2 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = 1) |
| 24 | 1, 2, 23 | mp2an 692 | 1 ⊢ ((pmSgn‘∅)‘∅) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 I cid 5552 ran crn 5660 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 -cneg 11472 ↑cexp 14084 ♯chash 14353 Word cword 14536 0gc0g 17458 Σg cgsu 17459 SymGrpcsymg 19355 pmTrspcpmtr 19427 pmSgncpsgn 19475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-splice 14773 df-reverse 14782 df-s2 14872 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-tset 17295 df-0g 17460 df-gsum 17461 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-efmnd 18852 df-grp 18924 df-minusg 18925 df-subg 19111 df-ghm 19201 df-gim 19247 df-oppg 19334 df-symg 19356 df-pmtr 19428 df-psgn 19477 |
| This theorem is referenced by: mdet0pr 22535 |
| Copyright terms: Public domain | W3C validator |