![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgn0fv0 | Structured version Visualization version GIF version |
Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.) |
Ref | Expression |
---|---|
psgn0fv0 | ⊢ ((pmSgn‘∅)‘∅) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . 2 ⊢ ∅ ∈ V | |
2 | wrd0 14494 | . 2 ⊢ ∅ ∈ Word ran (pmTrsp‘∅) | |
3 | eqid 2731 | . . . . . 6 ⊢ (0g‘(SymGrp‘∅)) = (0g‘(SymGrp‘∅)) | |
4 | 3 | gsum0 18610 | . . . . 5 ⊢ ((SymGrp‘∅) Σg ∅) = (0g‘(SymGrp‘∅)) |
5 | eqid 2731 | . . . . . . . . 9 ⊢ (SymGrp‘∅) = (SymGrp‘∅) | |
6 | 5 | symgid 19311 | . . . . . . . 8 ⊢ (∅ ∈ V → ( I ↾ ∅) = (0g‘(SymGrp‘∅))) |
7 | 1, 6 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ ∅) = (0g‘(SymGrp‘∅)) |
8 | res0 5985 | . . . . . . 7 ⊢ ( I ↾ ∅) = ∅ | |
9 | 7, 8 | eqtr3i 2761 | . . . . . 6 ⊢ (0g‘(SymGrp‘∅)) = ∅ |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (0g‘(SymGrp‘∅)) = ∅) |
11 | 4, 10 | eqtr2id 2784 | . . . 4 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ∅ = ((SymGrp‘∅) Σg ∅)) |
12 | 11 | fveq2d 6895 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅))) |
13 | eqid 2731 | . . . 4 ⊢ ran (pmTrsp‘∅) = ran (pmTrsp‘∅) | |
14 | eqid 2731 | . . . 4 ⊢ (pmSgn‘∅) = (pmSgn‘∅) | |
15 | 5, 13, 14 | psgnvalii 19419 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)) = (-1↑(♯‘∅))) |
16 | hash0 14332 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
17 | 16 | oveq2i 7423 | . . . . 5 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
18 | neg1cn 12331 | . . . . . 6 ⊢ -1 ∈ ℂ | |
19 | exp0 14036 | . . . . . 6 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (-1↑0) = 1 |
21 | 17, 20 | eqtri 2759 | . . . 4 ⊢ (-1↑(♯‘∅)) = 1 |
22 | 21 | a1i 11 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (-1↑(♯‘∅)) = 1) |
23 | 12, 15, 22 | 3eqtrd 2775 | . 2 ⊢ ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = 1) |
24 | 1, 2, 23 | mp2an 689 | 1 ⊢ ((pmSgn‘∅)‘∅) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 I cid 5573 ran crn 5677 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 ℂcc 11112 0cc0 11114 1c1 11115 -cneg 11450 ↑cexp 14032 ♯chash 14295 Word cword 14469 0gc0g 17390 Σg cgsu 17391 SymGrpcsymg 19276 pmTrspcpmtr 19351 pmSgncpsgn 19399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-word 14470 df-lsw 14518 df-concat 14526 df-s1 14551 df-substr 14596 df-pfx 14626 df-splice 14705 df-reverse 14714 df-s2 14804 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-tset 17221 df-0g 17392 df-gsum 17393 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-efmnd 18787 df-grp 18859 df-minusg 18860 df-subg 19040 df-ghm 19129 df-gim 19174 df-oppg 19252 df-symg 19277 df-pmtr 19352 df-psgn 19401 |
This theorem is referenced by: mdet0pr 22315 |
Copyright terms: Public domain | W3C validator |