MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgn0fv0 Structured version   Visualization version   GIF version

Theorem psgn0fv0 19529
Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019.)
Assertion
Ref Expression
psgn0fv0 ((pmSgn‘∅)‘∅) = 1

Proof of Theorem psgn0fv0
StepHypRef Expression
1 0ex 5307 . 2 ∅ ∈ V
2 wrd0 14577 . 2 ∅ ∈ Word ran (pmTrsp‘∅)
3 eqid 2737 . . . . . 6 (0g‘(SymGrp‘∅)) = (0g‘(SymGrp‘∅))
43gsum0 18697 . . . . 5 ((SymGrp‘∅) Σg ∅) = (0g‘(SymGrp‘∅))
5 eqid 2737 . . . . . . . . 9 (SymGrp‘∅) = (SymGrp‘∅)
65symgid 19419 . . . . . . . 8 (∅ ∈ V → ( I ↾ ∅) = (0g‘(SymGrp‘∅)))
71, 6ax-mp 5 . . . . . . 7 ( I ↾ ∅) = (0g‘(SymGrp‘∅))
8 res0 6001 . . . . . . 7 ( I ↾ ∅) = ∅
97, 8eqtr3i 2767 . . . . . 6 (0g‘(SymGrp‘∅)) = ∅
109a1i 11 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (0g‘(SymGrp‘∅)) = ∅)
114, 10eqtr2id 2790 . . . 4 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ∅ = ((SymGrp‘∅) Σg ∅))
1211fveq2d 6910 . . 3 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)))
13 eqid 2737 . . . 4 ran (pmTrsp‘∅) = ran (pmTrsp‘∅)
14 eqid 2737 . . . 4 (pmSgn‘∅) = (pmSgn‘∅)
155, 13, 14psgnvalii 19527 . . 3 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘((SymGrp‘∅) Σg ∅)) = (-1↑(♯‘∅)))
16 hash0 14406 . . . . . 6 (♯‘∅) = 0
1716oveq2i 7442 . . . . 5 (-1↑(♯‘∅)) = (-1↑0)
18 neg1cn 12380 . . . . . 6 -1 ∈ ℂ
19 exp0 14106 . . . . . 6 (-1 ∈ ℂ → (-1↑0) = 1)
2018, 19ax-mp 5 . . . . 5 (-1↑0) = 1
2117, 20eqtri 2765 . . . 4 (-1↑(♯‘∅)) = 1
2221a1i 11 . . 3 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → (-1↑(♯‘∅)) = 1)
2312, 15, 223eqtrd 2781 . 2 ((∅ ∈ V ∧ ∅ ∈ Word ran (pmTrsp‘∅)) → ((pmSgn‘∅)‘∅) = 1)
241, 2, 23mp2an 692 1 ((pmSgn‘∅)‘∅) = 1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333   I cid 5577  ran crn 5686  cres 5687  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  -cneg 11493  cexp 14102  chash 14369  Word cword 14552  0gc0g 17484   Σg cgsu 17485  SymGrpcsymg 19386  pmTrspcpmtr 19459  pmSgncpsgn 19507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-subg 19141  df-ghm 19231  df-gim 19277  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509
This theorem is referenced by:  mdet0pr  22598
  Copyright terms: Public domain W3C validator