Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-isghm Structured version   Visualization version   GIF version

Theorem sn-isghm 42232
Description: Longer proof of isghm 19178, unsuccessfully attempting to simplify isghm 19178 using elovmpo 7666 according to an editorial note (now removed). Has an additional disjoint variable condition: 𝐹𝑢𝑣. (Contributed by SN, 7-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
sn-isghm.w 𝑋 = (Base‘𝑆)
sn-isghm.x 𝑌 = (Base‘𝑇)
sn-isghm.a + = (+g𝑆)
sn-isghm.b = (+g𝑇)
Assertion
Ref Expression
sn-isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem sn-isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 19176 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
2 fvex 6909 . . . . . 6 (Base‘𝑠) ∈ V
3 feq2 6705 . . . . . . 7 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
4 raleq 3311 . . . . . . . 8 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
54raleqbi1dv 3322 . . . . . . 7 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
63, 5anbi12d 630 . . . . . 6 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
72, 6sbcie 3817 . . . . 5 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
87abbii 2795 . . . 4 {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))}
9 fvex 6909 . . . . . 6 (Base‘𝑡) ∈ V
10 fsetex 8875 . . . . . 6 ((Base‘𝑡) ∈ V → {𝑓𝑓:(Base‘𝑠)⟶(Base‘𝑡)} ∈ V)
119, 10ax-mp 5 . . . . 5 {𝑓𝑓:(Base‘𝑠)⟶(Base‘𝑡)} ∈ V
12 abanssl 4300 . . . . 5 {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} ⊆ {𝑓𝑓:(Base‘𝑠)⟶(Base‘𝑡)}
1311, 12ssexi 5323 . . . 4 {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} ∈ V
148, 13eqeltri 2821 . . 3 {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} ∈ V
15 fveq2 6896 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
16 sn-isghm.w . . . . . . . . 9 𝑋 = (Base‘𝑆)
1715, 16eqtr4di 2783 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
1817adantr 479 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝑋)
19 fveq2 6896 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
20 sn-isghm.x . . . . . . . . 9 𝑌 = (Base‘𝑇)
2119, 20eqtr4di 2783 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
2221adantl 480 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑡) = 𝑌)
2318, 22feq23d 6718 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
24 fveq2 6896 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
25 sn-isghm.a . . . . . . . . . . . 12 + = (+g𝑆)
2624, 25eqtr4di 2783 . . . . . . . . . . 11 (𝑠 = 𝑆 → (+g𝑠) = + )
2726oveqd 7436 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
2827fveq2d 6900 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓‘(𝑢(+g𝑠)𝑣)) = (𝑓‘(𝑢 + 𝑣)))
29 fveq2 6896 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
30 sn-isghm.b . . . . . . . . . . 11 = (+g𝑇)
3129, 30eqtr4di 2783 . . . . . . . . . 10 (𝑡 = 𝑇 → (+g𝑡) = )
3231oveqd 7436 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
3328, 32eqeqan12d 2739 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3418, 33raleqbidv 3329 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3518, 34raleqbidv 3329 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3623, 35anbi12d 630 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
3736abbidv 2794 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
388, 37eqtrid 2777 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
391, 14, 38elovmpo 7666 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
4016fvexi 6910 . . . . . 6 𝑋 ∈ V
4120fvexi 6910 . . . . . 6 𝑌 ∈ V
42 fex2 7942 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐹 ∈ V)
4340, 41, 42mp3an23 1449 . . . . 5 (𝐹:𝑋𝑌𝐹 ∈ V)
4443adantr 479 . . . 4 ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V)
45 feq1 6704 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
46 fveq1 6895 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
47 fveq1 6895 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
48 fveq1 6895 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
4947, 48oveq12d 7437 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
5046, 49eqeq12d 2741 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
51502ralbidv 3208 . . . . 5 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
5245, 51anbi12d 630 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
5344, 52elab3 3672 . . 3 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
54533anbi3i 1156 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}) ↔ (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
55 df-3an 1086 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
5639, 54, 553bitri 296 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wral 3050  Vcvv 3461  [wsbc 3773  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  Grpcgrp 18898   GrpHom cghm 19175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847  df-ghm 19176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator