Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-isghm Structured version   Visualization version   GIF version

Theorem sn-isghm 42628
Description: Longer proof of isghm 19255, unsuccessfully attempting to simplify isghm 19255 using elovmpo 7695 according to an editorial note (now removed). (Contributed by SN, 7-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
sn-isghm.w 𝑋 = (Base‘𝑆)
sn-isghm.x 𝑌 = (Base‘𝑇)
sn-isghm.a + = (+g𝑆)
sn-isghm.b = (+g𝑇)
Assertion
Ref Expression
sn-isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem sn-isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 19253 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
2 fvex 6933 . . . . . 6 (Base‘𝑠) ∈ V
3 feq2 6729 . . . . . . 7 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
4 raleq 3331 . . . . . . . 8 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
54raleqbi1dv 3346 . . . . . . 7 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
63, 5anbi12d 631 . . . . . 6 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
72, 6sbcie 3848 . . . . 5 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
87abbii 2812 . . . 4 {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))}
9 fvex 6933 . . . . . 6 (Base‘𝑡) ∈ V
10 fsetex 8914 . . . . . 6 ((Base‘𝑡) ∈ V → {𝑓𝑓:(Base‘𝑠)⟶(Base‘𝑡)} ∈ V)
119, 10ax-mp 5 . . . . 5 {𝑓𝑓:(Base‘𝑠)⟶(Base‘𝑡)} ∈ V
12 abanssl 4330 . . . . 5 {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} ⊆ {𝑓𝑓:(Base‘𝑠)⟶(Base‘𝑡)}
1311, 12ssexi 5340 . . . 4 {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} ∈ V
148, 13eqeltri 2840 . . 3 {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} ∈ V
15 fveq2 6920 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
16 sn-isghm.w . . . . . . . . 9 𝑋 = (Base‘𝑆)
1715, 16eqtr4di 2798 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
1817adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝑋)
19 fveq2 6920 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
20 sn-isghm.x . . . . . . . . 9 𝑌 = (Base‘𝑇)
2119, 20eqtr4di 2798 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
2221adantl 481 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑡) = 𝑌)
2318, 22feq23d 6742 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
24 fveq2 6920 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
25 sn-isghm.a . . . . . . . . . . . 12 + = (+g𝑆)
2624, 25eqtr4di 2798 . . . . . . . . . . 11 (𝑠 = 𝑆 → (+g𝑠) = + )
2726oveqd 7465 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
2827fveq2d 6924 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓‘(𝑢(+g𝑠)𝑣)) = (𝑓‘(𝑢 + 𝑣)))
29 fveq2 6920 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
30 sn-isghm.b . . . . . . . . . . 11 = (+g𝑇)
3129, 30eqtr4di 2798 . . . . . . . . . 10 (𝑡 = 𝑇 → (+g𝑡) = )
3231oveqd 7465 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
3328, 32eqeqan12d 2754 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3418, 33raleqbidv 3354 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3518, 34raleqbidv 3354 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3623, 35anbi12d 631 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
3736abbidv 2811 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∣ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
388, 37eqtrid 2792 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
391, 14, 38elovmpo 7695 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
4016fvexi 6934 . . . . . 6 𝑋 ∈ V
4120fvexi 6934 . . . . . 6 𝑌 ∈ V
42 fex2 7974 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐹 ∈ V)
4340, 41, 42mp3an23 1453 . . . . 5 (𝐹:𝑋𝑌𝐹 ∈ V)
4443adantr 480 . . . 4 ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V)
45 feq1 6728 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
46 fveq1 6919 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
47 fveq1 6919 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
48 fveq1 6919 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
4947, 48oveq12d 7466 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
5046, 49eqeq12d 2756 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
51502ralbidv 3227 . . . . 5 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
5245, 51anbi12d 631 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
5344, 52elab3 3702 . . 3 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
54533anbi3i 1159 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}) ↔ (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
55 df-3an 1089 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
5639, 54, 553bitri 297 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  [wsbc 3804  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973   GrpHom cghm 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-ghm 19253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator