![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvol2 | Structured version Visualization version GIF version |
Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvol2.f | β’ β²ππ |
vonvol2.a | β’ (π β π΄ β π) |
vonvol2.x | β’ (π β π β dom (volnβ{π΄})) |
vonvol2.y | β’ π = βͺ π β π ran π |
Ref | Expression |
---|---|
vonvol2 | β’ (π β ((volnβ{π΄})βπ) = (volβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonvol2.a | . . 3 β’ (π β π΄ β π) | |
2 | vonvol2.f | . . . . . . 7 β’ β²ππ | |
3 | snfi 9043 | . . . . . . . . 9 β’ {π΄} β Fin | |
4 | 3 | a1i 11 | . . . . . . . 8 β’ (π β {π΄} β Fin) |
5 | vonvol2.x | . . . . . . . 8 β’ (π β π β dom (volnβ{π΄})) | |
6 | 4, 5 | vonmblss2 45912 | . . . . . . 7 β’ (π β π β (β βm {π΄})) |
7 | vonvol2.y | . . . . . . 7 β’ π = βͺ π β π ran π | |
8 | 2, 1, 6, 7 | ssmapsn 44469 | . . . . . 6 β’ (π β π = (π βm {π΄})) |
9 | 8 | eqcomd 2732 | . . . . 5 β’ (π β (π βm {π΄}) = π) |
10 | 9, 5 | eqeltrd 2827 | . . . 4 β’ (π β (π βm {π΄}) β dom (volnβ{π΄})) |
11 | 6 | adantr 480 | . . . . . . . . . 10 β’ ((π β§ π β π) β π β (β βm {π΄})) |
12 | simpr 484 | . . . . . . . . . 10 β’ ((π β§ π β π) β π β π) | |
13 | 11, 12 | sseldd 3978 | . . . . . . . . 9 β’ ((π β§ π β π) β π β (β βm {π΄})) |
14 | elmapi 8842 | . . . . . . . . 9 β’ (π β (β βm {π΄}) β π:{π΄}βΆβ) | |
15 | frn 6717 | . . . . . . . . 9 β’ (π:{π΄}βΆβ β ran π β β) | |
16 | 13, 14, 15 | 3syl 18 | . . . . . . . 8 β’ ((π β§ π β π) β ran π β β) |
17 | 16 | ralrimiva 3140 | . . . . . . 7 β’ (π β βπ β π ran π β β) |
18 | iunss 5041 | . . . . . . 7 β’ (βͺ π β π ran π β β β βπ β π ran π β β) | |
19 | 17, 18 | sylibr 233 | . . . . . 6 β’ (π β βͺ π β π ran π β β) |
20 | 7, 19 | eqsstrid 4025 | . . . . 5 β’ (π β π β β) |
21 | 1, 20 | vonvolmbl 45931 | . . . 4 β’ (π β ((π βm {π΄}) β dom (volnβ{π΄}) β π β dom vol)) |
22 | 10, 21 | mpbid 231 | . . 3 β’ (π β π β dom vol) |
23 | 1, 22 | vonvol 45932 | . 2 β’ (π β ((volnβ{π΄})β(π βm {π΄})) = (volβπ)) |
24 | 9 | eqcomd 2732 | . . 3 β’ (π β π = (π βm {π΄})) |
25 | 24 | fveq2d 6888 | . 2 β’ (π β ((volnβ{π΄})βπ) = ((volnβ{π΄})β(π βm {π΄}))) |
26 | eqidd 2727 | . 2 β’ (π β (volβπ) = (volβπ)) | |
27 | 23, 25, 26 | 3eqtr4d 2776 | 1 β’ (π β ((volnβ{π΄})βπ) = (volβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β²wnfc 2877 βwral 3055 β wss 3943 {csn 4623 βͺ ciun 4990 dom cdm 5669 ran crn 5670 βΆwf 6532 βcfv 6536 (class class class)co 7404 βm cmap 8819 Fincfn 8938 βcr 11108 volcvol 25342 volncvoln 45808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-ac2 10457 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-disj 5107 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-acn 9936 df-ac 10110 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14030 df-hash 14293 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-clim 15435 df-rlim 15436 df-sum 15636 df-prod 15853 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-rest 17374 df-0g 17393 df-topgen 17395 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-subg 19047 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-cring 20138 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-dvr 20300 df-drng 20586 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-cnfld 21236 df-top 22746 df-topon 22763 df-bases 22799 df-cmp 23241 df-ovol 25343 df-vol 25344 df-sumge0 45633 df-ome 45760 df-caragen 45762 df-ovoln 45807 df-voln 45809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |