HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stge1i Structured version   Visualization version   GIF version

Theorem stge1i 31491
Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
sto1.1 𝐴C
Assertion
Ref Expression
stge1i (𝑆 ∈ States → (1 ≤ (𝑆𝐴) ↔ (𝑆𝐴) = 1))

Proof of Theorem stge1i
StepHypRef Expression
1 sto1.1 . . . . . 6 𝐴C
2 stle1 31478 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
43anim1i 616 . . . 4 ((𝑆 ∈ States ∧ 1 ≤ (𝑆𝐴)) → ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴)))
54ex 414 . . 3 (𝑆 ∈ States → (1 ≤ (𝑆𝐴) → ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴))))
6 stcl 31469 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
71, 6mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
8 1re 11214 . . . 4 1 ∈ ℝ
9 letri3 11299 . . . 4 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) = 1 ↔ ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴))))
107, 8, 9sylancl 587 . . 3 (𝑆 ∈ States → ((𝑆𝐴) = 1 ↔ ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴))))
115, 10sylibrd 259 . 2 (𝑆 ∈ States → (1 ≤ (𝑆𝐴) → (𝑆𝐴) = 1))
12 1le1 11842 . . 3 1 ≤ 1
13 breq2 5153 . . 3 ((𝑆𝐴) = 1 → (1 ≤ (𝑆𝐴) ↔ 1 ≤ 1))
1412, 13mpbiri 258 . 2 ((𝑆𝐴) = 1 → 1 ≤ (𝑆𝐴))
1511, 14impbid1 224 1 (𝑆 ∈ States → (1 ≤ (𝑆𝐴) ↔ (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  cfv 6544  cr 11109  1c1 11111  cle 11249   C cch 30182  Statescst 30215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-i2m1 11178  ax-1ne0 11179  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-hilex 30252
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-icc 13331  df-sh 30460  df-ch 30474  df-st 31464
This theorem is referenced by:  stm1i  31496
  Copyright terms: Public domain W3C validator