![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stge1i | Structured version Visualization version GIF version |
Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stge1i | ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stle1 32153 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ≤ 1)) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ≤ 1) |
4 | 3 | anim1i 613 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 1 ≤ (𝑆‘𝐴)) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴))) |
5 | 4 | ex 411 | . . 3 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
6 | stcl 32144 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 1re 11253 | . . . 4 ⊢ 1 ∈ ℝ | |
9 | letri3 11338 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 584 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 258 | . 2 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → (𝑆‘𝐴) = 1)) |
12 | 1le1 11881 | . . 3 ⊢ 1 ≤ 1 | |
13 | breq2 5148 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → (1 ≤ (𝑆‘𝐴) ↔ 1 ≤ 1)) | |
14 | 12, 13 | mpbiri 257 | . 2 ⊢ ((𝑆‘𝐴) = 1 → 1 ≤ (𝑆‘𝐴)) |
15 | 11, 14 | impbid1 224 | 1 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5144 ‘cfv 6544 ℝcr 11146 1c1 11148 ≤ cle 11288 Cℋ cch 30857 Statescst 30890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-i2m1 11215 ax-1ne0 11216 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-hilex 30927 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-icc 13377 df-sh 31135 df-ch 31149 df-st 32139 |
This theorem is referenced by: stm1i 32171 |
Copyright terms: Public domain | W3C validator |