HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stge1i Structured version   Visualization version   GIF version

Theorem stge1i 32140
Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
sto1.1 𝐴C
Assertion
Ref Expression
stge1i (𝑆 ∈ States → (1 ≤ (𝑆𝐴) ↔ (𝑆𝐴) = 1))

Proof of Theorem stge1i
StepHypRef Expression
1 sto1.1 . . . . . 6 𝐴C
2 stle1 32127 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
43anim1i 615 . . . 4 ((𝑆 ∈ States ∧ 1 ≤ (𝑆𝐴)) → ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴)))
54ex 412 . . 3 (𝑆 ∈ States → (1 ≤ (𝑆𝐴) → ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴))))
6 stcl 32118 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
71, 6mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
8 1re 11150 . . . 4 1 ∈ ℝ
9 letri3 11235 . . . 4 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) = 1 ↔ ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴))))
107, 8, 9sylancl 586 . . 3 (𝑆 ∈ States → ((𝑆𝐴) = 1 ↔ ((𝑆𝐴) ≤ 1 ∧ 1 ≤ (𝑆𝐴))))
115, 10sylibrd 259 . 2 (𝑆 ∈ States → (1 ≤ (𝑆𝐴) → (𝑆𝐴) = 1))
12 1le1 11782 . . 3 1 ≤ 1
13 breq2 5106 . . 3 ((𝑆𝐴) = 1 → (1 ≤ (𝑆𝐴) ↔ 1 ≤ 1))
1412, 13mpbiri 258 . 2 ((𝑆𝐴) = 1 → 1 ≤ (𝑆𝐴))
1511, 14impbid1 225 1 (𝑆 ∈ States → (1 ≤ (𝑆𝐴) ↔ (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  cr 11043  1c1 11045  cle 11185   C cch 30831  Statescst 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-i2m1 11112  ax-1ne0 11113  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-icc 13289  df-sh 31109  df-ch 31123  df-st 32113
This theorem is referenced by:  stm1i  32145
  Copyright terms: Public domain W3C validator