Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stge1i | Structured version Visualization version GIF version |
Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stge1i | ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stle1 30306 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ≤ 1)) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ≤ 1) |
4 | 3 | anim1i 618 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 1 ≤ (𝑆‘𝐴)) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴))) |
5 | 4 | ex 416 | . . 3 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
6 | stcl 30297 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 1re 10833 | . . . 4 ⊢ 1 ∈ ℝ | |
9 | letri3 10918 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 589 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 262 | . 2 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → (𝑆‘𝐴) = 1)) |
12 | 1le1 11460 | . . 3 ⊢ 1 ≤ 1 | |
13 | breq2 5057 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → (1 ≤ (𝑆‘𝐴) ↔ 1 ≤ 1)) | |
14 | 12, 13 | mpbiri 261 | . 2 ⊢ ((𝑆‘𝐴) = 1 → 1 ≤ (𝑆‘𝐴)) |
15 | 11, 14 | impbid1 228 | 1 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 ℝcr 10728 1c1 10730 ≤ cle 10868 Cℋ cch 29010 Statescst 29043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-i2m1 10797 ax-1ne0 10798 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-hilex 29080 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-icc 12942 df-sh 29288 df-ch 29302 df-st 30292 |
This theorem is referenced by: stm1i 30324 |
Copyright terms: Public domain | W3C validator |