Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stge1i | Structured version Visualization version GIF version |
Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stge1i | ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stle1 30488 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ≤ 1)) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ≤ 1) |
4 | 3 | anim1i 614 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 1 ≤ (𝑆‘𝐴)) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴))) |
5 | 4 | ex 412 | . . 3 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
6 | stcl 30479 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 1re 10906 | . . . 4 ⊢ 1 ∈ ℝ | |
9 | letri3 10991 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 585 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 258 | . 2 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → (𝑆‘𝐴) = 1)) |
12 | 1le1 11533 | . . 3 ⊢ 1 ≤ 1 | |
13 | breq2 5074 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → (1 ≤ (𝑆‘𝐴) ↔ 1 ≤ 1)) | |
14 | 12, 13 | mpbiri 257 | . 2 ⊢ ((𝑆‘𝐴) = 1 → 1 ≤ (𝑆‘𝐴)) |
15 | 11, 14 | impbid1 224 | 1 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 ℝcr 10801 1c1 10803 ≤ cle 10941 Cℋ cch 29192 Statescst 29225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 df-sh 29470 df-ch 29484 df-st 30474 |
This theorem is referenced by: stm1i 30506 |
Copyright terms: Public domain | W3C validator |