| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > stge1i | Structured version Visualization version GIF version | ||
| Description: If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sto1.1 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| stge1i | ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
| 2 | stle1 32205 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ≤ 1)) | |
| 3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ≤ 1) |
| 4 | 3 | anim1i 615 | . . . 4 ⊢ ((𝑆 ∈ States ∧ 1 ≤ (𝑆‘𝐴)) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴))) |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
| 6 | stcl 32196 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
| 7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
| 8 | 1re 11112 | . . . 4 ⊢ 1 ∈ ℝ | |
| 9 | letri3 11198 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 1 ↔ ((𝑆‘𝐴) ≤ 1 ∧ 1 ≤ (𝑆‘𝐴)))) |
| 11 | 5, 10 | sylibrd 259 | . 2 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) → (𝑆‘𝐴) = 1)) |
| 12 | 1le1 11745 | . . 3 ⊢ 1 ≤ 1 | |
| 13 | breq2 5093 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → (1 ≤ (𝑆‘𝐴) ↔ 1 ≤ 1)) | |
| 14 | 12, 13 | mpbiri 258 | . 2 ⊢ ((𝑆‘𝐴) = 1 → 1 ≤ (𝑆‘𝐴)) |
| 15 | 11, 14 | impbid1 225 | 1 ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 ℝcr 11005 1c1 11007 ≤ cle 11147 Cℋ cch 30909 Statescst 30942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 df-sh 31187 df-ch 31201 df-st 32191 |
| This theorem is referenced by: stm1i 32223 |
| Copyright terms: Public domain | W3C validator |