Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10672 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 11205 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5033 1c1 10569 ≤ cle 10707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-mulcl 10630 ax-mulrcl 10631 ax-i2m1 10636 ax-1ne0 10637 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 |
This theorem is referenced by: nnge1 11695 1elunit 12895 fldiv4p1lem1div2 13247 expge1 13509 leexp1a 13582 bernneq 13633 faclbnd3 13695 facubnd 13703 hashsnle1 13821 wrdlen1 13946 wrdl1exs1 14007 fprodge1 15390 cos1bnd 15581 sincos1sgn 15587 eirrlem 15598 xrhmeo 23640 pcoval2 23710 pige3ALT 25204 cxplea 25379 cxple2a 25382 cxpaddlelem 25432 abscxpbnd 25434 mule1 25825 sqff1o 25859 logfacbnd3 25899 logexprlim 25901 dchrabs2 25938 bposlem5 25964 zabsle1 25972 lgslem2 25974 lgsfcl2 25979 lgseisen 26055 dchrisum0flblem1 26184 log2sumbnd 26220 clwwlknon1le1 27978 nmopun 29889 branmfn 29980 stge1i 30113 dstfrvunirn 31953 subfaclim 32659 jm2.17a 40267 jm2.17b 40268 fmuldfeq 42584 stoweidlem3 43004 stoweidlem18 43019 |
Copyright terms: Public domain | W3C validator |