Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10906 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 11439 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 1c1 10803 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: nnge1 11931 1elunit 13131 fldiv4p1lem1div2 13483 expge1 13748 leexp1a 13821 bernneq 13872 faclbnd3 13934 facubnd 13942 hashsnle1 14060 wrdlen1 14185 wrdl1exs1 14246 fprodge1 15633 cos1bnd 15824 sincos1sgn 15830 eirrlem 15841 xrhmeo 24015 pcoval2 24085 pige3ALT 25581 cxplea 25756 cxple2a 25759 cxpaddlelem 25809 abscxpbnd 25811 mule1 26202 sqff1o 26236 logfacbnd3 26276 logexprlim 26278 dchrabs2 26315 bposlem5 26341 zabsle1 26349 lgslem2 26351 lgsfcl2 26356 lgseisen 26432 dchrisum0flblem1 26561 log2sumbnd 26597 clwwlknon1le1 28366 nmopun 30277 branmfn 30368 stge1i 30501 dstfrvunirn 32341 subfaclim 33050 sticksstones12a 40041 jm2.17a 40698 jm2.17b 40699 fmuldfeq 43014 stoweidlem3 43434 stoweidlem18 43449 sepfsepc 46109 seppcld 46111 |
Copyright terms: Public domain | W3C validator |