Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10975 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 11509 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5074 1c1 10872 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: nnge1 12001 1elunit 13202 fldiv4p1lem1div2 13555 expge1 13820 leexp1a 13893 bernneq 13944 faclbnd3 14006 facubnd 14014 hashsnle1 14132 wrdlen1 14257 wrdl1exs1 14318 fprodge1 15705 cos1bnd 15896 sincos1sgn 15902 eirrlem 15913 xrhmeo 24109 pcoval2 24179 pige3ALT 25676 cxplea 25851 cxple2a 25854 cxpaddlelem 25904 abscxpbnd 25906 mule1 26297 sqff1o 26331 logfacbnd3 26371 logexprlim 26373 dchrabs2 26410 bposlem5 26436 zabsle1 26444 lgslem2 26446 lgsfcl2 26451 lgseisen 26527 dchrisum0flblem1 26656 log2sumbnd 26692 clwwlknon1le1 28465 nmopun 30376 branmfn 30467 stge1i 30600 dstfrvunirn 32441 subfaclim 33150 sticksstones12a 40113 jm2.17a 40782 jm2.17b 40783 fmuldfeq 43124 stoweidlem3 43544 stoweidlem18 43559 sepfsepc 46221 seppcld 46223 |
Copyright terms: Public domain | W3C validator |