| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version | ||
| Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1le1 | ⊢ 1 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11150 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | leidi 11688 | 1 ⊢ 1 ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 1c1 11045 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: nnge1 12190 1elunit 13407 fldiv4p1lem1div2 13773 expge1 14040 leexp1a 14116 bernneq 14170 faclbnd3 14233 facubnd 14241 hashsnle1 14358 wrdlen1 14495 wrdl1exs1 14554 fprodge1 15937 cos1bnd 16131 sincos1sgn 16137 eirrlem 16148 psdmvr 22032 xrhmeo 24820 pcoval2 24892 pige3ALT 26405 cxplea 26581 cxple2a 26584 cxpaddlelem 26637 abscxpbnd 26639 mule1 27034 sqff1o 27068 logfacbnd3 27110 logexprlim 27112 dchrabs2 27149 bposlem5 27175 zabsle1 27183 lgslem2 27185 lgsfcl2 27190 lgseisen 27266 dchrisum0flblem1 27395 log2sumbnd 27431 clwwlknon1le1 30003 nmopun 31916 branmfn 32007 stge1i 32140 dstfrvunirn 34439 subfaclim 35148 sticksstones12a 42118 jm2.17a 42922 jm2.17b 42923 fmuldfeq 45554 stoweidlem3 45974 stoweidlem18 45989 ceilhalfnn 47310 m1modne 47322 sepfsepc 48889 seppcld 48891 |
| Copyright terms: Public domain | W3C validator |