| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version | ||
| Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1le1 | ⊢ 1 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11240 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | leidi 11776 | 1 ⊢ 1 ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5124 1c1 11135 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: nnge1 12273 1elunit 13492 fldiv4p1lem1div2 13857 expge1 14122 leexp1a 14198 bernneq 14252 faclbnd3 14315 facubnd 14323 hashsnle1 14440 wrdlen1 14577 wrdl1exs1 14636 fprodge1 16016 cos1bnd 16210 sincos1sgn 16216 eirrlem 16227 psdmvr 22112 xrhmeo 24900 pcoval2 24972 pige3ALT 26486 cxplea 26662 cxple2a 26665 cxpaddlelem 26718 abscxpbnd 26720 mule1 27115 sqff1o 27149 logfacbnd3 27191 logexprlim 27193 dchrabs2 27230 bposlem5 27256 zabsle1 27264 lgslem2 27266 lgsfcl2 27271 lgseisen 27347 dchrisum0flblem1 27476 log2sumbnd 27512 clwwlknon1le1 30087 nmopun 32000 branmfn 32091 stge1i 32224 dstfrvunirn 34512 subfaclim 35215 sticksstones12a 42175 jm2.17a 42951 jm2.17b 42952 fmuldfeq 45579 stoweidlem3 45999 stoweidlem18 46014 ceilhalfnn 47332 m1modne 47344 sepfsepc 48869 seppcld 48871 |
| Copyright terms: Public domain | W3C validator |