| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version | ||
| Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1le1 | ⊢ 1 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11107 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | leidi 11646 | 1 ⊢ 1 ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5086 1c1 11002 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-mulrcl 11064 ax-i2m1 11069 ax-1ne0 11070 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 |
| This theorem is referenced by: nnge1 12148 1elunit 13365 fldiv4p1lem1div2 13734 expge1 14001 leexp1a 14077 bernneq 14131 faclbnd3 14194 facubnd 14202 hashsnle1 14319 wrdlen1 14456 wrdl1exs1 14516 fprodge1 15897 cos1bnd 16091 sincos1sgn 16097 eirrlem 16108 psdmvr 22079 xrhmeo 24866 pcoval2 24938 pige3ALT 26451 cxplea 26627 cxple2a 26630 cxpaddlelem 26683 abscxpbnd 26685 mule1 27080 sqff1o 27114 logfacbnd3 27156 logexprlim 27158 dchrabs2 27195 bposlem5 27221 zabsle1 27229 lgslem2 27231 lgsfcl2 27236 lgseisen 27312 dchrisum0flblem1 27441 log2sumbnd 27477 clwwlknon1le1 30073 nmopun 31986 branmfn 32077 stge1i 32210 dstfrvunirn 34480 subfaclim 35224 sticksstones12a 42190 jm2.17a 42993 jm2.17b 42994 fmuldfeq 45623 stoweidlem3 46041 stoweidlem18 46056 ceilhalfnn 47367 m1modne 47379 sepfsepc 48959 seppcld 48961 |
| Copyright terms: Public domain | W3C validator |