| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version | ||
| Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1le1 | ⊢ 1 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | leidi 11712 | 1 ⊢ 1 ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 1c1 11069 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: nnge1 12214 1elunit 13431 fldiv4p1lem1div2 13797 expge1 14064 leexp1a 14140 bernneq 14194 faclbnd3 14257 facubnd 14265 hashsnle1 14382 wrdlen1 14519 wrdl1exs1 14578 fprodge1 15961 cos1bnd 16155 sincos1sgn 16161 eirrlem 16172 psdmvr 22056 xrhmeo 24844 pcoval2 24916 pige3ALT 26429 cxplea 26605 cxple2a 26608 cxpaddlelem 26661 abscxpbnd 26663 mule1 27058 sqff1o 27092 logfacbnd3 27134 logexprlim 27136 dchrabs2 27173 bposlem5 27199 zabsle1 27207 lgslem2 27209 lgsfcl2 27214 lgseisen 27290 dchrisum0flblem1 27419 log2sumbnd 27455 clwwlknon1le1 30030 nmopun 31943 branmfn 32034 stge1i 32167 dstfrvunirn 34466 subfaclim 35175 sticksstones12a 42145 jm2.17a 42949 jm2.17b 42950 fmuldfeq 45581 stoweidlem3 46001 stoweidlem18 46016 ceilhalfnn 47337 m1modne 47349 sepfsepc 48916 seppcld 48918 |
| Copyright terms: Public domain | W3C validator |