| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version | ||
| Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1le1 | ⊢ 1 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11181 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | leidi 11719 | 1 ⊢ 1 ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 1c1 11076 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: nnge1 12221 1elunit 13438 fldiv4p1lem1div2 13804 expge1 14071 leexp1a 14147 bernneq 14201 faclbnd3 14264 facubnd 14272 hashsnle1 14389 wrdlen1 14526 wrdl1exs1 14585 fprodge1 15968 cos1bnd 16162 sincos1sgn 16168 eirrlem 16179 psdmvr 22063 xrhmeo 24851 pcoval2 24923 pige3ALT 26436 cxplea 26612 cxple2a 26615 cxpaddlelem 26668 abscxpbnd 26670 mule1 27065 sqff1o 27099 logfacbnd3 27141 logexprlim 27143 dchrabs2 27180 bposlem5 27206 zabsle1 27214 lgslem2 27216 lgsfcl2 27221 lgseisen 27297 dchrisum0flblem1 27426 log2sumbnd 27462 clwwlknon1le1 30037 nmopun 31950 branmfn 32041 stge1i 32174 dstfrvunirn 34473 subfaclim 35182 sticksstones12a 42152 jm2.17a 42956 jm2.17b 42957 fmuldfeq 45588 stoweidlem3 46008 stoweidlem18 46023 ceilhalfnn 47341 m1modne 47353 sepfsepc 48920 seppcld 48922 |
| Copyright terms: Public domain | W3C validator |