![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11259 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 11795 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 1c1 11154 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: nnge1 12292 1elunit 13507 fldiv4p1lem1div2 13872 expge1 14137 leexp1a 14212 bernneq 14265 faclbnd3 14328 facubnd 14336 hashsnle1 14453 wrdlen1 14589 wrdl1exs1 14648 fprodge1 16028 cos1bnd 16220 sincos1sgn 16226 eirrlem 16237 xrhmeo 24991 pcoval2 25063 pige3ALT 26577 cxplea 26753 cxple2a 26756 cxpaddlelem 26809 abscxpbnd 26811 mule1 27206 sqff1o 27240 logfacbnd3 27282 logexprlim 27284 dchrabs2 27321 bposlem5 27347 zabsle1 27355 lgslem2 27357 lgsfcl2 27362 lgseisen 27438 dchrisum0flblem1 27567 log2sumbnd 27603 clwwlknon1le1 30130 nmopun 32043 branmfn 32134 stge1i 32267 dstfrvunirn 34456 subfaclim 35173 sticksstones12a 42139 jm2.17a 42949 jm2.17b 42950 fmuldfeq 45539 stoweidlem3 45959 stoweidlem18 45974 m1modne 47288 sepfsepc 48724 seppcld 48726 |
Copyright terms: Public domain | W3C validator |