| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version | ||
| Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1le1 | ⊢ 1 ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11115 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | leidi 11654 | 1 ⊢ 1 ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5092 1c1 11010 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: nnge1 12156 1elunit 13373 fldiv4p1lem1div2 13739 expge1 14006 leexp1a 14082 bernneq 14136 faclbnd3 14199 facubnd 14207 hashsnle1 14324 wrdlen1 14461 wrdl1exs1 14520 fprodge1 15902 cos1bnd 16096 sincos1sgn 16102 eirrlem 16113 psdmvr 22054 xrhmeo 24842 pcoval2 24914 pige3ALT 26427 cxplea 26603 cxple2a 26606 cxpaddlelem 26659 abscxpbnd 26661 mule1 27056 sqff1o 27090 logfacbnd3 27132 logexprlim 27134 dchrabs2 27171 bposlem5 27197 zabsle1 27205 lgslem2 27207 lgsfcl2 27212 lgseisen 27288 dchrisum0flblem1 27417 log2sumbnd 27453 clwwlknon1le1 30045 nmopun 31958 branmfn 32049 stge1i 32182 dstfrvunirn 34443 subfaclim 35161 sticksstones12a 42130 jm2.17a 42933 jm2.17b 42934 fmuldfeq 45564 stoweidlem3 45984 stoweidlem18 45999 ceilhalfnn 47320 m1modne 47332 sepfsepc 48912 seppcld 48914 |
| Copyright terms: Public domain | W3C validator |