![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10328 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 10854 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4843 1c1 10225 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-mulcl 10286 ax-mulrcl 10287 ax-i2m1 10292 ax-1ne0 10293 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 |
This theorem is referenced by: nnge1 11342 1elunit 12543 fldiv4p1lem1div2 12891 expge1 13151 leexp1a 13173 bernneq 13244 faclbnd3 13332 facubnd 13340 hashsnle1 13454 wrdlen1 13574 wrdl1exs1 13633 fprodge1 15062 cos1bnd 15253 sincos1sgn 15259 eirrlem 15268 xrhmeo 23073 pcoval2 23143 pige3 24611 cxplea 24783 cxple2a 24786 cxpaddlelem 24836 abscxpbnd 24838 mule1 25226 sqff1o 25260 logfacbnd3 25300 logexprlim 25302 dchrabs2 25339 bposlem5 25365 zabsle1 25373 lgslem2 25375 lgsfcl2 25380 lgseisen 25456 dchrisum0flblem1 25549 log2sumbnd 25585 clwwlknon1le1 27440 nmopun 29398 branmfn 29489 stge1i 29622 dstfrvunirn 31053 subfaclim 31687 jm2.17a 38308 jm2.17b 38309 fmuldfeq 40555 stoweidlem3 40959 stoweidlem18 40974 |
Copyright terms: Public domain | W3C validator |