![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 11824 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 1c1 11185 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: nnge1 12321 1elunit 13530 fldiv4p1lem1div2 13886 expge1 14150 leexp1a 14225 bernneq 14278 faclbnd3 14341 facubnd 14349 hashsnle1 14466 wrdlen1 14602 wrdl1exs1 14661 fprodge1 16043 cos1bnd 16235 sincos1sgn 16241 eirrlem 16252 xrhmeo 24996 pcoval2 25068 pige3ALT 26580 cxplea 26756 cxple2a 26759 cxpaddlelem 26812 abscxpbnd 26814 mule1 27209 sqff1o 27243 logfacbnd3 27285 logexprlim 27287 dchrabs2 27324 bposlem5 27350 zabsle1 27358 lgslem2 27360 lgsfcl2 27365 lgseisen 27441 dchrisum0flblem1 27570 log2sumbnd 27606 clwwlknon1le1 30133 nmopun 32046 branmfn 32137 stge1i 32270 dstfrvunirn 34439 subfaclim 35156 sticksstones12a 42114 jm2.17a 42917 jm2.17b 42918 fmuldfeq 45504 stoweidlem3 45924 stoweidlem18 45939 sepfsepc 48607 seppcld 48609 |
Copyright terms: Public domain | W3C validator |