Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subneintr2d | Structured version Visualization version GIF version |
Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d 11260. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
subneintr2d.4 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
subneintr2d | ⊢ (𝜑 → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subneintr2d.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | negidd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | pncand.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | subaddd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | subcan2ad 11263 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) |
6 | 5 | necon3bid 2988 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐶) ≠ (𝐵 − 𝐶) ↔ 𝐴 ≠ 𝐵)) |
7 | 1, 6 | mpbird 260 | 1 ⊢ (𝜑 → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ≠ wne 2943 (class class class)co 7234 ℂcc 10756 − cmin 11091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-br 5070 df-opab 5132 df-mpt 5152 df-id 5471 df-po 5485 df-so 5486 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-pnf 10898 df-mnf 10899 df-ltxr 10901 df-sub 11093 |
This theorem is referenced by: ang180 25728 angpieqvdlem 25742 nnfoctbdjlem 43713 |
Copyright terms: Public domain | W3C validator |