MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Structured version   Visualization version   GIF version

Theorem angpieqvdlem 26771
Description: Equivalence used in the proof of angpieqvd 26774. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A (𝜑𝐴 ∈ ℂ)
angpieqvdlem.B (𝜑𝐵 ∈ ℂ)
angpieqvdlem.C (𝜑𝐶 ∈ ℂ)
angpieqvdlem.AneB (𝜑𝐴𝐵)
angpieqvdlem.AneC (𝜑𝐴𝐶)
Assertion
Ref Expression
angpieqvdlem (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 angpieqvdlem.B . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11509 . . . . 5 (𝜑 → (𝐶𝐵) ∈ ℂ)
4 angpieqvdlem.A . . . . . 6 (𝜑𝐴 ∈ ℂ)
54, 2subcld 11509 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
6 angpieqvdlem.AneB . . . . . 6 (𝜑𝐴𝐵)
74, 2, 6subne0d 11518 . . . . 5 (𝜑 → (𝐴𝐵) ≠ 0)
83, 5, 7divcld 11934 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
98negcld 11496 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
10 1cnd 11145 . . . 4 (𝜑 → 1 ∈ ℂ)
11 angpieqvdlem.AneC . . . . . . 7 (𝜑𝐴𝐶)
1211necomd 2980 . . . . . 6 (𝜑𝐶𝐴)
131, 4, 2, 12subneintr2d 11555 . . . . 5 (𝜑 → (𝐶𝐵) ≠ (𝐴𝐵))
143, 5, 7, 13divne1d 11945 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ≠ 1)
158, 10, 14negned 11506 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ≠ -1)
169, 15xov1plusxeqvd 13435 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
173, 5, 7divnegd 11947 . . . . . 6 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = (-(𝐶𝐵) / (𝐴𝐵)))
181, 2negsubdi2d 11525 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1918oveq1d 7384 . . . . . 6 (𝜑 → (-(𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
2017, 19eqtrd 2764 . . . . 5 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
215, 7dividd 11932 . . . . . . . 8 (𝜑 → ((𝐴𝐵) / (𝐴𝐵)) = 1)
2221oveq1d 7384 . . . . . . 7 (𝜑 → (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
235, 3, 5, 7divsubdird 11973 . . . . . . 7 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))))
2410, 8negsubd 11515 . . . . . . 7 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
2522, 23, 243eqtr4rd 2775 . . . . . 6 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)))
264, 1, 2nnncan2d 11544 . . . . . . 7 (𝜑 → ((𝐴𝐵) − (𝐶𝐵)) = (𝐴𝐶))
2726oveq1d 7384 . . . . . 6 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = ((𝐴𝐶) / (𝐴𝐵)))
2825, 27eqtrd 2764 . . . . 5 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = ((𝐴𝐶) / (𝐴𝐵)))
2920, 28oveq12d 7387 . . . 4 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) = (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))))
302, 1subcld 11509 . . . . 5 (𝜑 → (𝐵𝐶) ∈ ℂ)
314, 1subcld 11509 . . . . 5 (𝜑 → (𝐴𝐶) ∈ ℂ)
324, 1, 11subne0d 11518 . . . . 5 (𝜑 → (𝐴𝐶) ≠ 0)
3330, 31, 5, 32, 7divcan7d 11962 . . . 4 (𝜑 → (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))) = ((𝐵𝐶) / (𝐴𝐶)))
342, 1, 4, 1, 11div2subd 11984 . . . 4 (𝜑 → ((𝐵𝐶) / (𝐴𝐶)) = ((𝐶𝐵) / (𝐶𝐴)))
3529, 33, 343eqtrrd 2769 . . 3 (𝜑 → ((𝐶𝐵) / (𝐶𝐴)) = (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))))
3635eleq1d 2813 . 2 (𝜑 → (((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
3716, 36bitr4d 282 1 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  -cneg 11382   / cdiv 11811  +crp 12927  (,)cioo 13282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-rp 12928  df-ioo 13286
This theorem is referenced by:  angpieqvd  26774
  Copyright terms: Public domain W3C validator