MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Structured version   Visualization version   GIF version

Theorem angpieqvdlem 26765
Description: Equivalence used in the proof of angpieqvd 26768. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A (𝜑𝐴 ∈ ℂ)
angpieqvdlem.B (𝜑𝐵 ∈ ℂ)
angpieqvdlem.C (𝜑𝐶 ∈ ℂ)
angpieqvdlem.AneB (𝜑𝐴𝐵)
angpieqvdlem.AneC (𝜑𝐴𝐶)
Assertion
Ref Expression
angpieqvdlem (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 angpieqvdlem.B . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11472 . . . . 5 (𝜑 → (𝐶𝐵) ∈ ℂ)
4 angpieqvdlem.A . . . . . 6 (𝜑𝐴 ∈ ℂ)
54, 2subcld 11472 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
6 angpieqvdlem.AneB . . . . . 6 (𝜑𝐴𝐵)
74, 2, 6subne0d 11481 . . . . 5 (𝜑 → (𝐴𝐵) ≠ 0)
83, 5, 7divcld 11897 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
98negcld 11459 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
10 1cnd 11107 . . . 4 (𝜑 → 1 ∈ ℂ)
11 angpieqvdlem.AneC . . . . . . 7 (𝜑𝐴𝐶)
1211necomd 2983 . . . . . 6 (𝜑𝐶𝐴)
131, 4, 2, 12subneintr2d 11518 . . . . 5 (𝜑 → (𝐶𝐵) ≠ (𝐴𝐵))
143, 5, 7, 13divne1d 11908 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ≠ 1)
158, 10, 14negned 11469 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ≠ -1)
169, 15xov1plusxeqvd 13398 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
173, 5, 7divnegd 11910 . . . . . 6 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = (-(𝐶𝐵) / (𝐴𝐵)))
181, 2negsubdi2d 11488 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1918oveq1d 7361 . . . . . 6 (𝜑 → (-(𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
2017, 19eqtrd 2766 . . . . 5 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
215, 7dividd 11895 . . . . . . . 8 (𝜑 → ((𝐴𝐵) / (𝐴𝐵)) = 1)
2221oveq1d 7361 . . . . . . 7 (𝜑 → (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
235, 3, 5, 7divsubdird 11936 . . . . . . 7 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))))
2410, 8negsubd 11478 . . . . . . 7 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
2522, 23, 243eqtr4rd 2777 . . . . . 6 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)))
264, 1, 2nnncan2d 11507 . . . . . . 7 (𝜑 → ((𝐴𝐵) − (𝐶𝐵)) = (𝐴𝐶))
2726oveq1d 7361 . . . . . 6 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = ((𝐴𝐶) / (𝐴𝐵)))
2825, 27eqtrd 2766 . . . . 5 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = ((𝐴𝐶) / (𝐴𝐵)))
2920, 28oveq12d 7364 . . . 4 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) = (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))))
302, 1subcld 11472 . . . . 5 (𝜑 → (𝐵𝐶) ∈ ℂ)
314, 1subcld 11472 . . . . 5 (𝜑 → (𝐴𝐶) ∈ ℂ)
324, 1, 11subne0d 11481 . . . . 5 (𝜑 → (𝐴𝐶) ≠ 0)
3330, 31, 5, 32, 7divcan7d 11925 . . . 4 (𝜑 → (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))) = ((𝐵𝐶) / (𝐴𝐶)))
342, 1, 4, 1, 11div2subd 11947 . . . 4 (𝜑 → ((𝐵𝐶) / (𝐴𝐶)) = ((𝐶𝐵) / (𝐶𝐴)))
3529, 33, 343eqtrrd 2771 . . 3 (𝜑 → ((𝐶𝐵) / (𝐶𝐴)) = (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))))
3635eleq1d 2816 . 2 (𝜑 → (((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
3716, 36bitr4d 282 1 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wne 2928  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009  cmin 11344  -cneg 11345   / cdiv 11774  +crp 12890  (,)cioo 13245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-rp 12891  df-ioo 13249
This theorem is referenced by:  angpieqvd  26768
  Copyright terms: Public domain W3C validator