MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Structured version   Visualization version   GIF version

Theorem angpieqvdlem 26795
Description: Equivalence used in the proof of angpieqvd 26798. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A (𝜑𝐴 ∈ ℂ)
angpieqvdlem.B (𝜑𝐵 ∈ ℂ)
angpieqvdlem.C (𝜑𝐶 ∈ ℂ)
angpieqvdlem.AneB (𝜑𝐴𝐵)
angpieqvdlem.AneC (𝜑𝐴𝐶)
Assertion
Ref Expression
angpieqvdlem (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 angpieqvdlem.B . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11599 . . . . 5 (𝜑 → (𝐶𝐵) ∈ ℂ)
4 angpieqvdlem.A . . . . . 6 (𝜑𝐴 ∈ ℂ)
54, 2subcld 11599 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
6 angpieqvdlem.AneB . . . . . 6 (𝜑𝐴𝐵)
74, 2, 6subne0d 11608 . . . . 5 (𝜑 → (𝐴𝐵) ≠ 0)
83, 5, 7divcld 12022 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
98negcld 11586 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
10 1cnd 11235 . . . 4 (𝜑 → 1 ∈ ℂ)
11 angpieqvdlem.AneC . . . . . . 7 (𝜑𝐴𝐶)
1211necomd 2988 . . . . . 6 (𝜑𝐶𝐴)
131, 4, 2, 12subneintr2d 11645 . . . . 5 (𝜑 → (𝐶𝐵) ≠ (𝐴𝐵))
143, 5, 7, 13divne1d 12033 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ≠ 1)
158, 10, 14negned 11596 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ≠ -1)
169, 15xov1plusxeqvd 13520 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
173, 5, 7divnegd 12035 . . . . . 6 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = (-(𝐶𝐵) / (𝐴𝐵)))
181, 2negsubdi2d 11615 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1918oveq1d 7425 . . . . . 6 (𝜑 → (-(𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
2017, 19eqtrd 2771 . . . . 5 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
215, 7dividd 12020 . . . . . . . 8 (𝜑 → ((𝐴𝐵) / (𝐴𝐵)) = 1)
2221oveq1d 7425 . . . . . . 7 (𝜑 → (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
235, 3, 5, 7divsubdird 12061 . . . . . . 7 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))))
2410, 8negsubd 11605 . . . . . . 7 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
2522, 23, 243eqtr4rd 2782 . . . . . 6 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)))
264, 1, 2nnncan2d 11634 . . . . . . 7 (𝜑 → ((𝐴𝐵) − (𝐶𝐵)) = (𝐴𝐶))
2726oveq1d 7425 . . . . . 6 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = ((𝐴𝐶) / (𝐴𝐵)))
2825, 27eqtrd 2771 . . . . 5 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = ((𝐴𝐶) / (𝐴𝐵)))
2920, 28oveq12d 7428 . . . 4 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) = (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))))
302, 1subcld 11599 . . . . 5 (𝜑 → (𝐵𝐶) ∈ ℂ)
314, 1subcld 11599 . . . . 5 (𝜑 → (𝐴𝐶) ∈ ℂ)
324, 1, 11subne0d 11608 . . . . 5 (𝜑 → (𝐴𝐶) ≠ 0)
3330, 31, 5, 32, 7divcan7d 12050 . . . 4 (𝜑 → (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))) = ((𝐵𝐶) / (𝐴𝐶)))
342, 1, 4, 1, 11div2subd 12072 . . . 4 (𝜑 → ((𝐵𝐶) / (𝐴𝐶)) = ((𝐶𝐵) / (𝐶𝐴)))
3529, 33, 343eqtrrd 2776 . . 3 (𝜑 → ((𝐶𝐵) / (𝐶𝐴)) = (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))))
3635eleq1d 2820 . 2 (𝜑 → (((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
3716, 36bitr4d 282 1 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2933  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  -cneg 11472   / cdiv 11899  +crp 13013  (,)cioo 13367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-rp 13014  df-ioo 13371
This theorem is referenced by:  angpieqvd  26798
  Copyright terms: Public domain W3C validator