MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsub4d Structured version   Visualization version   GIF version

Theorem addsub4d 11516
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
addsub4d.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
addsub4d (𝜑 → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷)))

Proof of Theorem addsub4d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 addsub4d.4 . 2 (𝜑𝐷 ∈ ℂ)
5 addsub4 11401 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷)))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑 → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11001   + caddc 11006  cmin 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343
This theorem is referenced by:  cjadd  15045  sadaddlem  16374  bezoutlem3  16449  pcqmul  16762  mul4sqlem  16862  4sqlem14  16867  4sqlem15  16868  4sqlem16  16869  4sqlem17  16870  blcvx  24711  ovolicc2lem4  25446  itgaddlem2  25750  dvaddbr  25865  ang180lem2  26745  mcubic  26782  quart1lem  26790  atanlogsublem  26850  mumullem2  27115  2lgslem3c  27334  2lgslem3d  27335  2sqlem8  27362  chpdifbndlem1  27489  pntrlog2bndlem2  27514  axcontlem8  28947  constrrtlc1  33740  constrrtcclem  33742  ballotlemgun  34533  itgaddnclem2  37718  cntotbnd  37835  lcmineqlem18  42078  2np3bcnp1  42176  sticksstones12  42190  bcle2d  42211  pellexlem6  42866  congadd  42998  subadd4b  45323  addlimc  45685  fourierdlem42  46186  smfmullem1  46828
  Copyright terms: Public domain W3C validator